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Abstract
Coastal wetlands are of great importance in protecting biodiversity, mitigating climate change, and providing natural 
resources. Using deep learning methods for the classification and mapping of coastal wetlands with optical remote sensing 
data can effectively monitor changes in wetlands, playing a crucial role in their protection. However, most current wetland 
classification methods focus on single-temporal data, with relatively few studies addressing multi-temporal data. Therefore, 
for the wetland classification task in the Bohai Rim region of China, an improved Swin-MTNet model based on the state-
of-the-art deep learning model Swin-UNet is proposed in this study to better capture temporal feature variations with multi-
temporal Sentinel-2 imagery. The Swin-MTNet is compared with Swin-UNet and DeepLabV3+, and the results indicate that 
Swin-MTNet achieves overall accuracy improvements of 5.12% and 2.85% and Kappa coefficient improvements of 6.85% 
and 3.86% over Swin-UNet and DeepLabV3+, respectively, when utilizing multi-temporal data. The classification improve-
ment for Spartina alterniflora is the most significant, with F1 scores increasing by 0.45 and 0.47 compared to Swin-UNet 
and DeepLabV3+, respectively. These results demonstrate that the proposed Swin-MTNet model can effectively leverage 
the temporal features of multi-temporal data, significantly improving the accuracy of coastal wetland classification.
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Introduction

Coastal wetlands, as the intersection of terrestrial and 
marine ecosystems, harbor valuable ecological resources. 
Coastal wetlands provide natural habitats for numerous wild-
life species (Barbier et al., 2011; Jamali and Mahdianpari, 
2022a; Mao et al., 2020) and play important roles in regulat-
ing climate, conserving water resources and preventing soil 
erosion (Jamali et al., 2021a; Mahdianpari et al., 2018; Mao 
et al., 2021). However, due to the rise in human activities, 
the area of coastal wetlands continues to diminish. (Asselen 
et al., 2013; Mahdianpari et al., 2017; McCarthy et al., 2018; 
Mohammadimanesh et al., 2018). Globally, the phenomenon 
of coastal wetland loss is worsening year by year, posing 

significant challenges to ecosystems and human society 
(Chen et al., 2019; Mao et al., 2021).

High-resolution wetland classification products can effec-
tively protect wetlands and help in land resource planning 
by providing precise and detailed information on wetland 
coverage (Zhu and Gong, 2014). Nevertheless, producing 
high-resolution wetland classification products is not an easy 
task (Mahdianpari et al., 2021). The temporal variability 
of wetland ecosystems and the remote geographical loca-
tions make traditional methods such as field surveys highly 
resource-intensive (Evans and Costa, 2013; Mahdianpari 
et al., 2017). Remote sensing technology has the charac-
teristic of covering large areas and can quickly acquire data 
over extensive regions. Compared to traditional ground sur-
vey methods, remote sensing monitoring offers significant 
advantages in terms of time and cost (Amani et al., 2021; 
Mahdianpari et al., 2018). Multispectral remote sensing 
data is the most widely used data for wetland classification 
due to its high spatial resolution and ease of access, mak-
ing it highly favored by many researchers. Sentinel-2 is a 
high-resolution multispectral imaging satellite equipped 
with a multispectral imager (MSI) at an altitude of 786 km, 
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covering 13 spectral bands with a swath width of 290 km 
(Chen et al., 2024c). Sentinel-2 observation data features 
high ground resolution and, compared to traditional satellite 
data, additionally provides red-edge and shortwave infrared 
bands. These extra bands better capture vegetation charac-
teristics, facilitating the classification of wetland vegetation 
(Saad El Imanni et al., 2022). This makes it an ideal satel-
lite image to produce high-resolution wetland classification 
products and monitor changes in coastal wetland categories.

In traditional coastal wetland classification methods, 
machine (Bennett, 1994; Berhane et al., 2018; Chen et al., 
2024a; Cortes and Vapnik, 1995) are widely used due to their 
advantages of low computational resource requirements and 
good performance with small datasets. However, as the data 
scale increases, traditional methods may struggle to handle 
high-dimensional data and large sample sizes. Compared to 
shallow models in machine learning, deep learning algorithms 
can typically process more complex data (Jamali et al., 2021b; 
Mohammadimanesh et  al., 2019), making deep learning 
methods, especially Convolutional Neural Networks (CNNs), 
increasingly popular for large-scale wetland classification tasks 
(Hosseiny et al., 2022; Jamali et al., 2022; Lou et al., 2024).

However, this structured network reaches a bottleneck. 
The development of network architectures in the field of 
Natural Language Processing (NLP) has led researchers 
to see another direction. Liu et al. proposed a universal 
Transformer backbone called Swin Transformer (Z. Liu 
et al., 2021c). It has achieved great success as a backbone 
feature extraction network and has shown its advantages in 
the field of wetland classification in remote sensing images 
(Bazi et al., 2021; He et al., 2020; Hong et al., 2022; Jamali 
et al., 2023). Jamali et al. discovered in their study on wet-
land classification in Canada that the Swin Transformer 
achieved higher average accuracy compared to CNN models 
like AlexNet and VGG-16 (Jamali and Mahdianpari, 2022b). 
Additionally, by integrating VGG-16, 3D CNN, and Swin 
Transformer models, the classification performance was 
further enhanced. Cao et al. leveraged Swin Transformer 
to develop a U-shaped network structure called Swin-UNet 
(Cao et al., 2022). The studies mentioned above have already 
indicated the effectiveness of the Swin-UNet model in clas-
sification tasks (Hao et al., 2024; Xiao et al., 2023; Yao and 
Jin, 2022). However, these studies have focused on limited 
regions and scenarios, warranting further validation of its 
classification performance.

Moreover, most researches involving remote sensing wet-
land classification only explore the performance of models 
based on single-temporal image, no matter with CNN mod-
els or Transformer models, with few utilizing multi-tempo-
ral datasets. Chen et al. use multi-temporal data to extract 
remote sensing information of coastal aquaculture ponds in 
the Zhoushan Archipelago from 1984 to 2022 (Chen et al., 
2024c), while Yang et  al. apply multi-temporal data for 

large-scale land cover classification tasks (Yang et al., 2022). 
Wetland land cover may exhibit different characteristics in 
different seasons; for example, seasonal variations in wet-
land vegetation spectra and water levels may affect wetland 
classification results. Therefore, multiple temporal data not 
only help to timely detect changes in wetland ecosystems, 
providing important information for ecological environment 
protection and management but also assist models in better 
understanding such temporal changes, thereby improving 
classification accuracy. However, most studies based on multi-
temporal data simply input the multi-temporal data into exist-
ing mature models to perform tasks such as classification. For 
example, Piaser and Villa (2023) only used spectral indices 
(SI) synthesized from multi-temporal Sentinel-2 data as input 
to established machine learning models to compare classi-
fication accuracy; Bill et al. (2024) utilized multi-temporal 
Landsat imagery, feeding each year’s image separately into 
a support vector machine model for analysis. Current stud-
ies (Alam and Hossain, 2024; Chen et al., 2023; Moharrami 
et al., 2024) have mainly focused on applying existing models 
to multi-temporal data without considering the potential to 
modify these models to better capture the temporal dynam-
ics and interactions in the data. Specifically, they have not 
considered how to adjust the model architecture to integrate 
multi-temporal features more effectively, which is critical to 
improving classification accuracy in wetland classification. 
How to incorporate this temporal information into the network 
model becomes an essential problem to be solved.

To address the current gap in research on utilizing multi-
temporal information for wetland classification, this paper 
aims to propose an improved multi-temporal network model, 
naming Swin-MTNet, based on the Swin-UNet model, for 
wetland classification tasks. The technological innovation of 
this model lies in modifying the Swin-UNet architecture and 
introducing modules for learning temporal feature informa-
tion and enhancing feature fusion, allowing the model to 
effectively capture information from the temporal dimension 
and improve wetland classification accuracy.

Material

Study Area

Bo Hai Coastal Region in Northern China, especially the 
Liao River estuary coastal wetland and the Yellow River 
delta coastal wetland which compress most coastal wet-
land land cover types, are chosen as our study areas. The 
geographical coordinates of the Liao River estuary wetland 
range from 121°28′ to 121°58′ east longitude and from 
40°45′ to 41°05′ north latitude. Located in the jurisdiction 
of Panjin City, Liaoning Province, in the northeastern part of 
Liaodong Bay, and the central part of the Liao River delta.
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The geographical coordinates of the Yellow River Delta 
wetland range from 118°32′ to 119°20′ east longitude and 
from 37°34′ to 38°12′ north latitude. It is located in the north-
eastern part of Dongying City, Shandong Province. Posi-
tioned on the south coast of Bohai Bay and the western part 
of Laizhou Bay, the wetland area spans 450,000 hectares in 
a fan-shaped distribution. The wetland types above all being 
coastal wetlands, and the wetland vegetation categories in the 
ecosystems are basically the same, including Suaeda salsa, 
Spartina alterniflora, and Phragmites australis, making map-
ping possible for the three regions together (Fig. 1).

Datasets

The remote sensing imagery data used in this study consists 
of Sentinel-2 satellite imagery downloaded from the Google 
Earth Engine (GEE) platform and Digital Elevation Model 
(DEM) data downloaded from the Earthdata platform. Senti-
nel-2 Level-2A surface reflectance products are employed in 
this study. The Level-2A data undergo spatial and atmospheric 

corrections, providing more accurate surface information suit-
able for land cover classification research. Sentinel-2 satellite 
imagery for the coastal wetlands of the Liao River estuary and 
the Yellow River delta in May, June, September, and Novem-
ber 2022 is selected. The specific band information used is 
presented in Table 1. These four months encompass a com-
plete cycle of vegetation growth, maturity, and senescence, 
providing more comprehensive vegetation feature informa-
tion. The DEM data utilized is the ASTER Global Digital 
Elevation Model V003 with a global spatial resolution of 30 
meters, released in June 2019.

Methodology

Data Preprocessing

Sentinel-2 satellite imagery undergoes cloud and cloud 
shadow removal using the Quality Assessment (QA) 
band. Images for specified months are composited using a 

Fig. 1   Schematic map of the Bohai Rim study area (the top left cor-
ner is an overview of the East Asia region, the top right corner is a 
true-color composite remote sensing image of the Liao River estuary 

coastal wetland, and the bottom left corner is a true-color composite 
remote sensing image of the Yellow River delta wetland)
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median operation. Both the spectral bands listed in Table 1 
and the DEM data are resampled to a 20-m resolution to 
maintain consistent resolution across all bands. Finally, 
the imagery data and DEM data are clipped to the size of 
the study area.

The label is generated by manual visual interpretation 
with Sentinel-2 images in 2022. The land cover across the 
Bo Hai Coastal Region is classified into nine categories: 
Suaeda salsa, Spartina alterniflora, Phragmites australis, 
mudflat, natural water bodies, farmland, reservoirs, aqua-
culture farm, and impervious surfaces. Table 2 shows the 
image features for each category in different months. For 
areas where the category is difficult to determine, high-
resolution images in Google Earth are used as references 
to ensure the labels are as close to reality as possible.

All Sentinel-2 images and the corresponding label 
are cropped into 128 × 128 using a sliding window. The 
cropped dataset is augmented using horizontal and vertical 
flips, increasing the total number of images to 5000. After 
shuffling the dataset, it is split into training, validation, and 
testing sets in a 6:2:2 ratio. Additionally, manual selec-
tion is performed to ensure that each dataset contains all 
classification categories. As mainstream network models 
typically accept single-temporal inputs, whereas multi-
temporal inputs are accepted by our proposed model, four 
different datasets are constructed to explore the model’s 
ability to learn temporal information during the classifica-
tion. A detailed description of these datasets is provided 
in Table 3.

Proposed Multi‑temporal Network for Classification

Structure of Proposed Network

The Swin-UNet (Cao et al., 2022) has demonstrated tre-
mendous potential in remote sensing image segmentation, 
thus is adopted as the baseline network in this study. To 

enable the model to learn information from different time 
phases, the encoder of Swin-UNet is designed as four 
independent branches. The four branches operate indepen-
dently, with each pathway composed of four Swin Trans-
former blocks, resulting in a network depth of 4. The input 
data passes through the Patch Extract layer and the Patch 
Embedding layer for encoding window size and position. 
Subsequently, it enters the Swin Transformer block for 
feature extraction. The features extracted from the four 
branches are concatenated and input into the CSAM for 
learning across the temporal dimension channels. The fea-
tures learned through time dimension are downsampled 
using the Patch Merging layer, and then proceed through 
Swin Transformer blocks and CSAM. This process is 
repeated three times to form the backbone feature extrac-
tion network. The SAFF module is used to implement skip 
connections in the network. It is used to fuse the features 
outputted by each layer of the Swin Transformer blocks 
with the features outputted by the CSAM at the same layer 
of the feature extraction network. The Patch Expanding 
layer is then utilized to upsample the features, resulting in 
features that are consistent in size with the input image. 
This network structure is named as Swin-MTNet in this 
work, and its structure is shown in Fig. 2. To mitigate 
overfitting, we incorporate regularization and dropout 
techniques into the Swin-MTNet. Specifically, we apply 
L2 regularization during training to reduce the model’s 
over-dependence on the training data, and introduce Drop-
out layers to further enhance the model’s robustness. As 
a result, this approach effectively reduces the number of 
training parameters, with the total number of parameters 
in the model being 2,302,465.

Swin-MTNet can be represented as:

where the input data is x1, x2, x3, x4 , each image has N bands, 
fenc represents the encoder, fdec represents the decoder. SAFF 
is used for feature fusion in the decoder part.

Channel Self‑Attention Model

The Swin Transformer, by design, is not capable of captur-
ing temporal information as it mainly focuses on extracting 
features from individual time steps. The CSAM, however, 
plays a crucial role in learning and incorporating tempo-
ral information. CSAM is a weight feature matrix with the 
same size as the original feature matrix, which uses a global 
self-attention mechanism to allocate weights to combination 
feature images concatenated at different times and to local 
feature extraction. It is responsible for assigning weights to 
the features extracted by the Swin Transformer at different 

(1)fSMTN = fdec(fCSAM(fenc
(

xN
1

)

,… , fenc
(

xN
4

)

))

Tabel 1   Sentinel-2 band information

Bands Wavelength (nm) Reso-
lution 
(m)

B2 (blue) 458–523 10
B3 (green) 543–578 10
B4 (red) 650–680 10
B5 (red-edge 1) 698–713 20
B6 (red-edge 2) 733–748 20
B7 (red-edge 3) 773–793 20
B8 (NIR) 785–900 10
B11 (SWIR 1) 1565–1655 20
B12 (SWIR 2) 2100–2280 20
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Table 2   Typical false-color 
composite image of Sentinel-2 
for each category in different 
months of 2022

Categories May June September November

Suaeda salsa (SS)

Spartina alterniflora (SA)

Phragmites australis (PA)

mudflat (MU)

natural water bodies (NWB)

farmland (FA)

reservoirs (RE)

aquaculture farm (AF)

impervious surfaces (IS)

Table 3   Detailed description of four constructed datasets

No. Name Input block dimension Input band description

Dataset I Single-temporal dataset (128, 128, 10) Sentinel-2 imagery with 9 bands and DEM data for September.
Dataset II Single-temporal augmented dataset (128, 128, 10) Sentinel-2 imagery with 9 bands and DEM data for May, June, Sep-

tember, and November.
Dataset III Band-stacked dataset (128, 128, 37) The Sentinel-2 imagery with 9 bands for May, June, September, 

and November stacked together, along with DEM data, forming a 
37-band image.

Dataset IV Multi-temporal dataset (128, 128, 10, 4) Adding the temporal dimension, the Sentinel-2 imagery with 9 bands 
and DEM data for May, June, September, and November are respec-
tively placed in the last dimension.
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time and selecting the most valuable temporal information. 
Channels with significant temporal changes are assigned 
higher weights, while those with minor changes are assigned 
lower weights.

The construction of the CSAM is illustrated in Fig. 3. The 
features from multiple encoder branches are concatenated 
and then enter two branches:

(1)	 Branch for extracting global attention. First, the concat-
enated features from different time steps are fed into a 
global average pooling layer, which reduces the dimen-
sions to one-dimensional to capture the global infor-
mation. Then, the features are passed through a 1×1 
convolutional layer to extract global features, reducing 
the number of channels by a factor of r. Next, the fea-
tures undergo Batch Normalization (Ioffe and Szegedy, 

2015) and ReLU activation for non-linear activation. 
Another 1×1 convolution operation followed by Batch 
Normalization is applied to deepen the feature extrac-
tion and restore the number of channels to their original 
count. Finally, the global feature map is fed into the 
self-attention mechanism to enable each channel to par-
ticipate in the computation, obtaining global features. 
The self-attention mechanism SA(x) is represented as:

where Q, K, and V matrices are all obtained from 
x. First, we compute the dot product between Q and 
K, and to prevent the result from being too large, 
we divide by the scale standard 

√

dk . Then, we use 

(2)SA(x) = softmax(
Q(x)K(x)T

√

dk
)V(x)

Fig. 2   Structure of Swin-MTNet network
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softmax to normalize the result into a probability dis-
tribution, and multiply by matrix V to get the weighted 
sum representation.

(2)	 Branch for extracting local attention. The global aver-
age pooling layer and the self-attention module in the 
branch responsible for extracting global attention were 
removed, limiting it to learning only local features.

The features from the two branches are then added 
together, fusing the global and local information. Addition-
ally, the locally extracted features have the same shape as 
the input features, allowing the preservation and enhance-
ment of fine details in the lower-level features. The fused 
features are transformed using a sigmoid function to obtain 
the final feature weights. These feature weights are applied 
to the combined features, resulting in the final weighted 
fused features.

The CSAM module can be represented as:

Self‑Attention Feature Fusion

The Swin-MTNet model is based on the U-shaped encoder-
decoder network, where skip connections are an essential 
part. Traditional skip connections typically concatenate 
low-level and high-level features followed by a convolution 
operation. This approach only captures local information, 
whereas the CSAM module can extract both global and local 
features. Therefore, we improved CSAM into two feature 
fusion modules called SAFF to enhance the model’s feature 
learning capability and improve classification accuracy.

As shown in Fig. 4, the SAFF structure works by adding 
two input features, X and Y, to obtain fused features, which 
are then passed through the CSAM for feature weight allo-
cation, resulting in the weight matrix W. Since the feature 
weights in CSAM are output by a sigmoid function, the W 
matrix contains values between 0 and 1. This ensures that 
both W and 1−W are positive, allowing the network to per-
form a soft selection or weighted averaging between X and 
Y (Dai et al., 2021). Through SAFF, the network can better 
explore the connections between shallow and deep network 
information, selectively extracting more valuable informa-
tion from both shallow and deep layers.

The SAFF module can be represented as:

Model Training Settings

The TensorFlow 2.0 framework is adopted for building and 
training the Swin-MTNet model and other image segmen-
tation models. The model training is operated on a 64-bit 

(3)fCSAB(x) = fsigmoid(SA(W
1

2
(fReLU (W

1

1
(fGAP(xconcat))))) +W

1

2
(fReLU (W

1

1
(xconcat))))

(4)
fSAFF(X,Y) = (X ⊗ fCSAM(X ⊕ Y))⊕ (Y ⊗ (1 − f CSAM(X ⊕ Y)))

Fig. 3   Channel self-attention model

Fig. 4   Self-attention feature fusion
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Windows 11 system, with an AMD Ryzen 7 5800H proces-
sor (CPU), a graphics processing unit (GPU) with 6 GB of 
memory from NVIDIA GeForce RTX 3060, and 16 GB of 
random-access memory (RAM). We utilize the Adam opti-
mizer with an initial learning rate of 1 × 10−5. During train-
ing, a warm-up strategy was employed to dynamically adjust 
the learning rate. The model with the lowest validation set 
loss during training is saved, and the batch size is set to 16. 
The loss function combines focal loss and dice loss.

Comparison and Evaluation

Evaluation Metrics

To evaluate the performance of the Swin-MTNet model and 
its classification effectiveness for wetland classification, pre-
cision, overall accuracy, recall rate, F1 score, and Kappa 
coefficient are adopted to evaluate the model. Accuracy, 
recall rate, and F1 score reflect the model’s ability to cor-
rectly classify each coastal wetland category, while overall 
accuracy reflects the model’s ability to correctly classify all 
categories. The Kappa coefficient can well reflect the accu-
racy of the model in classifying small sample categories. 
The formulas of abovementioned metrics are as follows:

In Eqs. (5) to (7), where TP, FP, and FN represent the 
number of pixels correctly identified as the foreground, 
incorrectly identified as the foreground, and wrongly iden-
tified as the background, respectively. In Eq. (9), N repre-
sents the sum of all elements in the confusion matrix; 

∑

xii 
represents the sum of diagonal elements in the confusion 
matrix, which is the correct elements; xi+ represents the sum 
of elements in the row i of the matrix.

Comparing Schemes

To investigate whether multi-temporal information can 
improve the classification accuracy of coastal wetlands and 

(5)Precision =
TP

TP + FP

(6)Overall Accuracy =
TP + TN

Total number of pixels
× 100

(7)Recall =
TP

TP + FN

(8)F1 − score = 2 ×
Precision × Recall

Precision + Recall

(9)Kappa =
Po − Pe

1 − Pe

,Po =

∑

xii

N
,Pe =

∑

xi+xi+

N2

whether the Swin-MTNet model can better utilize tempo-
ral information compared to mainstream models with a 
large number of citations, Swin-UNet and DeepLabV3+ 
(Chen et al., 2018) are selected as comparative models. 
The comparative scheme is designed as shown in Table 4. 
Swin-UNet, as the optimized model, has been shown in a 
few studies to be effective for (Hao et al., 2024; Xiao et al., 
2023), and the comparative results can better reflect the opti-
mization effect. DeepLabV3+, as a popular deep learning 
model, has demonstrated excellent classification results in 
many fields, and many researchers use it as the basis for their 
studies, providing a powerful benchmark for evaluating the 
performance of the models (Gonzalez-Perez et al., 2022; M. 
Liu et al., 2021a, 2021b).

Scheme 1 uses mainstream models to classify coastal 
wetlands with the single-temporal dataset introduced in the 
“Data Preprocessing” section, providing only the imagery 
information from September when the vegetation is at its 
growing peak. This scheme investigates the classification 
capability of the models on single-temporal data. Schemes 
2 and 3 examine the classification capabilities of mainstream 
models with different forms of multi-temporal informa-
tion. Scheme 2 uses the single-temporal expanded dataset 
described in the “Data Preprocessing” section, where each 
sample lacks multi-temporal information, but the dataset 
contains images from four different months. Each input 
image is from a single temporal instance. Scheme 3 uses 
the band-stacked multi-temporal dataset described in the 
“Data Preprocessing” section. Each sample contains all band 
information from four different temporal instances, forming 
a multi-temporal dataset. These schemes help explore the 
mainstream models’ ability to learn from different forms of 
multi-temporal information. Scheme 4 is an ablation study 
for Swin-MTNet. By comparing the classification results 
with and without the CSAM and SAFF modules, we investi-
gate the role of these modules in learning temporal informa-
tion and their contribution to classification accuracy.

Results

Ablation Study

Our proposed Swin-MTNet model introduced the CSAM 
module and SAFF module to learn temporal features and 
enhance feature fusion. To better evaluate the impact of 
these modules and the structure on improving the classifica-
tion accuracy, we conducted ablation experiments first. The 
comparison results of Swin-MTNet, i.e., Schemes 4, on the 
test dataset are shown in Table 5. The overall accuracy (OA) 
for model using only the Swin-MTNet four-branch model, 
as in Scheme 4’s Swin-MTNet-ECS, reached 92.53%, and 
the Kappa coefficient is 90.22%. As the CSAM is added in 
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the branch fusion part, as in Scheme 4’s Swin-MTNet-ES, 
the model is enabling to better learn temporal features. By 
filtering temporal features, the accuracy of most categories 
improved compared to Swin-MTNet-ECS, with the OA and 
Kappa coefficient increasing by 0.75% and 0.97%, respec-
tively. Especially for the classification of Spartina alterni-
flora, the F1 score increased by 8%. Furthermore, the SAFF 
module is added to the skip connections, as in Scheme 4’s 
Swin-MTNet, to better capture the relationship between 
shallow and deep information. This resulted in further 
improved accuracy compared to Swin-MTNet-ES without 
the SAFF module, achieving an OA of 93.83% and a Kappa 
coefficient of 91.91%.

It is evident from Table 5 that the accuracy for Spartina 
alterniflora, Phragmites australis, impervious surfaces, 
and aquaculture significantly improved with the addition 
of the CSAM and SAFF modules, with F1 scores increas-
ing by 15%, 3%, 4%, and 3% respectively. The accuracy for 
Suaeda salsa, natural water bodies, mudflat, farmland, and 
reservoirs showed little change, with improvements less 
than 3%. Without using CSAM to learn temporal features, 

the Swin-MTNet-ECS model tends to misclassify Spartina 
alterniflora as mudflat. This is because Spartina alterniflora 
does not grow during certain months, and the model fails 
to focus on the characteristics of the growing months, thus 
predicting them as mudflat. The Swin-MTNet model with 
CSAM reduced the misclassification of Spartina alterniflora 
as mudflat by more than half. Phragmites australis have 
features similar to farmland, leading to many Phragmites 
australis pixels being misclassified as farmland. However, 
the slightly different growing cycles between the two allow 
the Swin-MTNet model to better distinguish them, improv-
ing classification accuracy. Suaeda salsa has the lowest F1 
score due to being a small sample with few pixels and scat-
tered distribution, resulting in lower classification accuracy. 
Impervious surfaces experience the most significant misclas-
sification and omission errors. This is due to the large sam-
ple size and the presence of Phragmites australis and other 
vegetation around buildings or roads, making it difficult to 
distinguish them in 20-m resolution remote sensing images.

Comparison with Other Methods

The best-performing model from Scheme 4 in Table 4, 
Swin-MTNet, is selected as the representative to compare 
against the contrast models Swin-UNet and DeepLabV3+ 
on different types of datasets, as shown in Schemes 1–3 in 
Table 4. The comparison results are presented in Table 6. It 
can be seen that Swin-MTNet achieved the highest OA and 
Kappa coefficients among all the models compared, with 
an OA of 93.83% and a Kappa coefficient of 91.91%. The 
contrast models performed the worst on the single-temporal 
dataset (Scheme 1). For the same contrast models, the clas-
sification accuracy for coastal wetlands is higher when using 
either the single-temporal augmented dataset (Scheme 2) 
or the temporal-stacked dataset (Scheme 3) compared to 
the single-temporal dataset. Compared to the single-tem-
poral dataset, the Swin-UNet model’s OA increased by 

Table 4   Comparison schemes

Swin-MTNet represents Swin-MTNet with both the CSAM and 
SAFF modules. Swin-MTNet-ES represents the Swin-MTNet model 
excluding the SAFF module, and Swin-MTNet-ECS represents the 
Swin-MTNet model excluding both the CSAM and SAFF modules

Scheme Input dataset Model

Scheme 1 Single-temporal dataset Swin-UNet
DeepLabV3+

Scheme 2 Single-temporal augmented 
dataset

Swin-UNet
DeepLabV3+

Scheme 3 Band-stacked dataset Swin-UNet
DeepLabV3+

Schemes 4 
(Ablation 
Study)

Multi-temporal dataset Swin-MTNet
Swin-MTNet-ES
Swin-MTNet-ECS

Table 5   Comparison results of 
ablation experiments

Class Swin-MTNet Swin-MTNet-ES Swin-MTNet-ECS

Precision Recall F1-score Precision Recall F1-score Precision Recall F1-score

SS 0.79 0.70 0.74 0.80 0.66 0.73 0.79 0.71 0.75
SA 0.85 0.83 0.84 0.77 0.78 0.78 0.76 0.65 0.70
NWB 0.98 0.98 0.98 0.98 0.98 0.98 0.99 0.97 0.98
MU 0.93 0.97 0.95 0.93 0.97 0.9475 0.90 0.97 0.93
AF 0.94 0.92 0.93 0.93 0.91 0.9241 0.92 0.92 0.92
IS 0.83 0.80 0.82 0.82 0.78 0.7973 0.80 0.76 0.78
PA 0.91 0.90 0.91 0.90 0.89 0.8920 0.90 0.87 0.88
FA 0.93 0.95 0.94 0.93 0.94 0.9346 0.91 0.94 0.93
RE 0.93 0.96 0.94 0.95 0.95 0.9484 0.97 0.90 0.93
OA (%) 93.83 93.28 92.53
Kappa (%) 91.91 91.19 90.22
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approximately 5.22% and the DeepLabV3+ model’s OA 
increased by approximately 7.54% when using the single-
temporal augmented dataset. When using the temporal-
stacked dataset, the Swin-UNet model’s OA increased by 
approximately 4.65% and the DeepLabV3+ model’s OA 
increased by approximately 5.54%. The result indicates that 
multi-temporal data provide more information to the models 
compared to single-temporal data, during the classification 
task. The models perform better especially for categories 
with significant temporal variations, such as Suaeda salsa, 
Phragmites australis, and mudflats, with multi-temporal data 
compared to single-temporal data. The classification results 
of Swin-UNet and DeepLabV3+ models have similar perfor-
mance on the band-stacked dataset and the single-temporal 
expanded dataset. Moreover, the OA and Kappa coefficients 
indicate that models using the single-temporal expanded 
dataset outperform those using the band-stacked dataset—
the OA of the Swin-UNet model improves by 0.57%, and the 
DeepLabV3+ model improves by 2%. However, for small 
sample categories with fewer pixels, such as Suaeda salsa 
and Spartina alterniflora, using the band-stacked dataset 
results in better classification performance.

Figure 5 illustrates the classification results of several 
representative scenes in the Liao River estuary region 
using different datasets with Swin-MTNet and contrast 
models under different schemes. The Swin-MTNet model 
effectively segments the edges between wetlands and 

natural water bodies compared with other results (first and 
second rows in Fig. 5). While contrast models using the 
band-stacked multi-temporal dataset (Scheme 3) can also 
segment the edges, they misclassify some central wetland 
areas as water bodies. Contrast models using the single-
temporal expanded dataset (Scheme 2) and the single-
temporal dataset (Scheme 1) fail to classify the wetlands 
into complete shapes. This is because the mudflat areas 
that labeled are the regions most exposed during the four 
temporal instances. If only single-temporal information 
is used, complete classification is almost impossible. The 
single-temporal expanded dataset may contain mismatches 
between labels and image information for categories like 
mudflats with significant temporal variations, leading to 
incomplete segmentation. The Swin-MTNet model per-
forms exceptionally well in classifying wetland vegeta-
tion, such as Suaeda salsa and Phragmites australis, with 
clear contours. The contrast models using the single-tem-
poral augmented dataset failed to classify Suaeda salsa 
(first row in Fig. 5), and models from other schemes also 
showed blurred edges in Suaeda salsa classification (sec-
ond row in Fig. 5). Similarly, except for the Swin-MTNet 
model, the contrast models from other schemes misclassi-
fied Phragmites australis as farmland or impervious sur-
faces (upper right corner of the second row in Fig. 5). For 
the classification of aquaculture areas, the Swin-MTNet 
model showed a significant reduction in misclassification. 

Table 6   Classification results of Swin-MTNet and contrast models on different schemes

Model Scheme Evaluation metrics SS SA NWB MU AF IS PA FA RE OA (%) Kappa (%)

Swin-UNet Scheme 1 Precision 0.10 0.61 0.89 0.74 0.81 0.67 0.81 0.86 0.39 83.49 77.93
Recall 0.07 0.30 0.95 0.60 0.76 0.65 0.73 0.90 0.25
F1-score 0.08 0.40 0.92 0.67 0.79 0.66 0.77 0.88 0.30

Scheme 2 Precision 0.26 0.28 0.95 0.81 0.89 0.76 0.86 0.88 0.96 88.71 85.06
Recall 0.33 0.15 0.97 0.78 0.85 0.73 0.80 0.92 0.90
F1-score 0.29 0.19 0.96 0.80 0.87 0.75 0.83 0.90 0.92

Scheme 3 Precision 0.47 0.44 0.97 0.87 0.86 0.71 0.79 0.88 0.85 88.14 84.41
Recall 0.37 0.36 0.96 0.89 0.86 0.67 0.75 0.91 0.65
F1-score 0.41 0.39 0.96 0.88 0.86 0.69 0.77 0.89 0.74

DeepLabV3+ Scheme 1 Precision 0.13 0.80 0.88 0.74 0.80 0.70 0.81 0.86 0.37 83.44 77.82
Recall 0.03 0.49 0.95 0.58 0.73 0.67 0.75 0.91 0.29
F1-score 0.04 0.60 0.92 0.65 0.76 0.68 0.78 0.89 0.33

Scheme 2 Precision 0.67 0.73 0.96 0.86 0.91 0.82 0.90 0.89 0.97 90.98 88.05
Recall 0.52 0.25 0.98 0.79 0.89 0.76 0.86 0.94 0.95
F1-score 0.58 0.37 0.97 0.82 0.90 0.79 0.88 0.92 0.96

Scheme 3 Precision 0.79 0.66 0.96 0.89 0.88 0.73 0.80 0.89 0.80 88.98 85.49
Recall 0.54 0.55 0.97 0.94 0.84 0.68 0.80 0.91 0.20
F1-score 0.64 0.60 0.96 0.91 0.86 0.70 0.80 0.90 0.32

Swin-MTNet Scheme 4 Precision 0.79 0.85 0.98 0.93 0.94 0.83 0.91 0.93 0.93 93.83 91.91
Recall 0.70 0.83 0.98 0.97 0.92 0.80 0.90 0.95 0.96
F1-score 0.74 0.84 0.98 0.95 0.95 0.82 0.91 0.94 0.94
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Contrast models using the temporal-stacked dataset and 
the single-temporal dataset misclassified aquaculture areas 
as natural water bodies (second row in Fig. 5), and other 
schemes also showed similar misclassification to varying 
degrees (third row in Fig. 5). The Swin-MTNet model pro-
vided a more complete classification of reservoirs. Contrast 

models using the temporal-stacked dataset exhibited some 
misclassification of small parts of the reservoir, with sur-
rounding aquaculture areas being misclassified as impervi-
ous surfaces.

Figure 6 displays the visualization results of Swin-MTNet 
and contrast models for classifying the Yellow River delta 

Image Label 
Swin-UNet 

Scheme 1 

Swin-UNet 

Scheme 2 

Swin-UNet 

Scheme 3 

DeepLabV3+ 

Scheme 1 

DeepLabV3+  

Scheme 2 

DeepLabV3+  

Scheme 3 

Swin-MTNet

Scheme 4 

Fig. 5   Visualization of classification results using different schemes with Swin-MTNet and contrast models in several representative scenes of 
the Liao River estuary region

Image Label 
Swin-UNet 

Scheme 1 

Swin-UNet 

Scheme 2 

Swin-UNet 

Scheme 3 

DeepLabV3+ 

Scheme 1 

DeepLabV3+ 

Scheme 2 

DeepLabV3+ 

Scheme 3 

Swin-MTNet

Scheme 4 

Fig. 6   Visual results of wetland classification using different schemes with Swin-MTNet and contrast models in several representative scenes of 
the Yellow River delta region
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wetland area using different schemes. For the classification 
of wetland vegetation such as Spartina alterniflora, Suaeda 
salsa, and Phragmites australis, the Swin-MTNet model still 
outperforms the contrast models from other schemes. The 
contrast models using the single-temporal augmented dataset 
(Scheme 2) made extensive errors in classifying Spartina 
alterniflora (first row in Fig. 6), and the Spartina alterni-
flora classified by contrast models from other schemes had 
blurry and fragmented contours. The classification results 
for Suaeda salsa and Phragmites australis are similar to 
those for Spartina alterniflora. Models using the temporal-
stacked dataset (Scheme 3) and the single-temporal dataset 
(Scheme 1) failed to classify Suaeda salsa (second row in 
Fig. 6). Except for the Swin-MTNet model, other models 
misclassified parts of the Phragmites australis as farmland 
and mudflat (second and third rows in Fig. 6). Compared 
to other results, the Swin-MTNet model provided accurate 
classifications for reservoirs and farmland, while other mod-
els had serious misclassifications for farmland. Models using 
single-temporal data (Scheme 1) severely misclassified res-
ervoirs as natural water bodies or aquaculture areas (third 
row in Fig. 6). For the classification of impervious surfaces, 
the Swin-MTNet model showed clear edges and better per-
formance compared to the models from other schemes (third 
row in Fig. 6).

As seen from Table 6 and Figs.  5 and 6, the Swin-
MTNet model outperforms the contrast models from other 
schemes in both the segmentation of mudflat edges and 
the classification of wetland vegetation. The F1 scores for 
mudflat, Suaeda salsa, Spartina alterniflora and are also 
the highest, at 0.95, 0.74, and 0.84, respectively. Com-
pared to Scheme 2’s DeepLabV3+ model, which has the 
second-highest overall accuracy after Swin-MTNet, these 
three categories show improvements of 0.13, 0.16, and 
0.47, respectively. Moreover, the DeepLabV3+ model in 
Scheme 2 does not perform well in classifying mudflat, 
as the segmented images are incomplete and exhibit large 
areas of misclassification. The Swin-UNet model, in both 
Scheme 2 and Scheme 3, does not perform well in classify-
ing Suaeda salsa and Spartina alterniflora, with frequent 
mutual misclassifications. Contrast models using multi-
temporal data (Schemes 2 and 3) generally perform better 
than those using single-temporal data (Scheme 1). This 
indicates that multi-temporal data provides more informa-
tion to the models, thereby aiding in the improvement of 
classification accuracy.

Wetland Maps of the Study Area

The models with the highest overall accuracy from Swin-
MTNet, Swin-UNet, and DeepLabV3+ are selected to per-
form wetland mapping of the study area in 2022. The results 

are shown in Figs. 7 and 8. As can be seen from the results, 
the Swin-MTNet model significantly outperforms the Swin-
UNet and DeepLabV3+ models in the classification of mud-
flats and wetland vegetation.

Discussion

Accurate mapping of coastal wetlands is a crucial and chal-
lenging task, and multi-temporal data can provide more 
information and is expected to improve accuracy. In this 
study, we propose the Swin-MTNet network model, which 
can learn multi-temporal information. The classification 
results of Swin-MTNet are compared and analyzed against 
the results of contrast models using both multi-temporal 
and single-temporal data. The results demonstrate that the 
proposed Swin-MTNet network model can better learn 
temporal features, outperforming contrast models on both 
temporally-augmented and temporally-stacked datasets, 
with significantly improved accuracy. Furthermore, it is 
concluded that multi-temporal information is more benefi-
cial for the classification of vegetation or other categories 
with significant temporal variations, particularly for cat-
egories such as Suaeda salsa, Spartina alterniflora, and 
Phragmites australis. Models trained on single-temporal 
dataset perform poorly due to the lack of complete tempo-
ral information, making it difficult to distinguish between 
different growth stages. Multi-temporal data, however, pro-
vides the model with more features, resulting in improved 
accuracy in coastal wetland classification. Current research 
(Chen et al., 2024b, 2022) also indicates that multi-temporal 
information can enhance classification accuracy. Guo et al. 
used a random forest model to classify the coastal wetlands 
of the Liaohe Estuary and found that methods utilizing tem-
poral features achieved higher overall accuracy and Kappa 
coefficient compared to methods lacking temporal features 
(Guo et al., 2024).

The proposed time learning module, CSAM, and fea-
ture fusion module, SAFF, are applicable to other models 
as well. CSAM is essentially a weight matrix, making it 
adaptable to other information filtering learning processes, 
enabling the selection of more important features through 
local and global feature learning. The SAFF module is 
another implementation of the CSAM module applied to 
the model’s skip connections. Hence, the CSAM module 
exhibits broad scalability and application scenarios, war-
ranting further exploration of its performance in other sce-
narios. Xiao et al. design a parallel branch with a context 
aggregation module in the Swin-UNet encoder to enhance 
contextual information extraction. The results showed that 
compared to Swin-UNet, the mIoU, mF1, and OA values 
increased by 2.83%, 2.47%, and 2.05%, respectively (Xiao 
et al., 2023).



Estuaries and Coasts           (2025) 48:72 	 Page 13 of 20     72 

Despite the excellent utilization of multi-temporal 
information by Swin-MTNet, there are still some limita-
tions. Image data must be complete and cannot contain 
missing values. If some pixel points in the samples are null 

values, training cannot be performed. However, after cloud 
removal and cloud shadow masking of the downloaded 
Sentinel-2 imagery, some areas with clouds may result in 
empty values. Therefore, for the parts of the image with 

Fig. 7   (a-e) Wetland map of the Liao River estuary region
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missing values after cloud removal, the nearest available 
image is used for filling, meeting Swin-MTNet’s require-
ment for high image quality, in this work. Nevertheless, 
since the filled parts are not from the same day as the 
original image, there may be some numerical deviations, 
which may affect the improvement of image classification 

accuracy. Experiments can be conducted using data gener-
ated by GANs to enhance the model’s robustness against 
this challenge in future research. Second, the utilized DEM 
elevation data is released in June 2019, with a global spa-
tial resolution of 30 m. Visual inspection revealed that in 
recent years, there have been small-scale land reclamation 

Fig. 7   (continued)
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projects in the Bohai Bay area. Additionally, the DEM 
data is resampled to a 20-m resolution, causing some dis-
crepancies between the DEM data and the 2022 Sentinel-2 
imagery of the Liao River estuary and Yellow River delta 
regions.

Due to the model’s use of temporal information across 
different seasons for learning, vegetation feature that are 
sensitive to seasonal variations significantly influence its 
performance. In regions with vegetation feature that differ 
markedly from the study area, such as coastal wetlands in 
southern China, the model’s classification accuracy may 
be affected by discrepancies in vegetation growth. This 
hypothesis was validated in preliminary experiments con-
ducted in the Yancheng area of Jiangsu Province. Results 
showed a significant reduction in classification accuracy 
for Suaeda salsa and Spartina alterniflora, with accura-
cies of 0.36 and 0.69, respectively, while the accuracy for 
farmland and Phragmites australis decreased slightly to 

0.88 and 0.83, respectively. Future research should focus 
on optimizing and improving the model for wetland types 
with significant regional differences and incorporating 
their feature to enhance its generalization ability.

Conclusion

This paper proposes a multi-temporal deep learning 
network model, Swin-MTNet, for classifying complex 
coastal wetlands using multi-temporal Sentinel-2 image 
data. Swin-UNet model is improved into a four-branch 
input model, with each branch receiving input from differ-
ent temporal data, and a time learning module, CSAM, is 
constructed to filter important temporal information from 
different branches. Additionally, based on the CSAM 
module, a feature fusion module, SAFF, is designed to 
fuse shallow and deep feature information at the model’s 

Fig. 7   (continued)
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Fig. 8   (a-e) Wetland map of the 
Yellow River delta region
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Fig. 8   (continued)
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skip connections. Different multi-temporal datasets are 
constructed to explore the differences in coastal wetland 
classification abilities between contrast models using 
multi-temporal and single-temporal information, and the 
ability of Swin-MTNet model to learn temporal features 
compared to other contrast models. The results indicate 
that after utilizing multi-temporal information, the aver-
age accuracy of Swin-UNet model for coastal wetland 
classification increases by 5.22%, and the Kappa coeffi-
cient increases by 7.13%. The average accuracy of Deep-
LabV3+ model increases by 7.54%, and the Kappa coeffi-
cient increases by 10.23%. Swin-MTNet model achieves a 

5.12% increase in average accuracy and a 6.85% increase 
in the Kappa coefficient compared to Swin-UNet model 
using multi-temporal information, and a 2.85% increase 
in average accuracy and a 3.86% increase in the Kappa 
coefficient compared to DeepLabV3+ model using multi-
temporal information. The experimental results demon-
strate that utilizing multi-temporal information from 
remote sensing can improve classification performance 
of coastal wetlands compared to utilizing single-temporal 
information, and our proposed Swin-MTNet model exhib-
its better ability to learn multi-temporal information than 
contrast models.

Fig. 8   (continued)
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