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ABSTRACT
The monitoring and evaluation of environmental and ecological status in mining area is critical 
for effective mineral management guidance, and remote sensing is a cost-effective solution for 
covering a wide spatial area with high temporal frequency. However, the diverse landscape in 
mining areas presents a challenge for finding a suitable monitoring method. To address this 
challenge, this study proposes a remote sensing-based comprehensive mining ecological 
index (CMEI), which integrates vegetation greenness, soil wetness, urban heat, air quality and 
water quality indicators obtained from Landsat images and Moderate Resolution Imaging 
Spectroradiometer (MODIS) products. The integration is achieved through a principal compo
nent analysis (PCA) to encapsulate various aspects of the environment in opencast mining 
areas. The proposed CMEI was then applied to assess the performance of an ecological 
restoration project carried out in the Xilinhot coalfield in Inner Mongolia, China, over the 
past two decades. Our findings show that the overall ecological environment in the dumping 
sites and backfilling sites of Xilinhot coalfield has improved from a score of 0.15 in 2005 to 0.33 
in 2020, according to the CMEI. Nevertheless, our study also highlights that some newly 
established dumping sites require further strengthening of management and maintenance 
measures. The CMEI presents a novel and effective approach for monitoring and evaluating the 
ecological environment in mining areas, and it can potentially be applied to assess the 
ecological environment of opencast mining areas globally.
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Introduction

Coal is a crucial natural resource and it plays the most 
essential role in electricity generation and industrial 
development in China (Yu 2017; Zhang et al. 2017; Bai 
et al. 2018). However, increasing opencast coal mining 
activities, particularly in Shanxi, Shaanxi, and Inner 
Mongolia, results in substantial ecological disturbances, 
impacting the original landform’s vegetation, soil, air, 
and landscape (Gao et al. 2021). To mitigate the ecolo
gical consequences of mining activities, ecological 
restoration and management have become a crucial 
issue and a focus of attention for the Chinese govern
ment (Lv et al. 2019; Du et al. 2020; Wang et al. 2021). In 
arid and semi-arid areas with high ecological fragility 
where most Chinese coalfields are located, ecological 
restoration projects are particularly necessary.

There are two main methods for monitoring the 
ecological environment of mining area and evaluating 
the performance of ecological restoration: field survey 
and remote sensing observation (Hui et al. 2021; Wang 
et al. 2021). Field surveys have traditionally been used 
for monitoring and evaluating ecological environ
ments, but they are time-consuming and labor- 
intensive, limiting the application of long-term and 

large-scale monitoring (McKenna et al. 2020). Remote 
sensing has led to more investigations on ecological 
monitoring and offers large coverage and high tem
poral frequency and efficiency (Li et al. 2020; Song et al.  
2020), enriching and diversifying the objects, methods, 
and perspectives in evaluations. Thus, the use of 
remote sensing technology for monitoring the ecolo
gical environment and restoration performance in 
mining areas is highly promising (Zhang et al. 2012; 
Song et al. 2020; Liu et al. 2021).

The original method of ecological environment 
monitoring using remote sensing techniques involves 
various vegetation indices, with the normalized differ
ence vegetation index (NDVI) being the most widely 
used one (Rouse et al. 1974). The NDVI has been uti
lized in many studies to monitor vegetation growth 
changes at different periods and to analyze the factors 
related to vegetation growth in mining areas (Erener  
2011; Tote et al. 2014; Padmanaban et al. 2017; Yang 
et al. 2018). However, the NDVI gets saturated at dense 
vegetated condition (Sun et al. 2018, 2020) and is 
highly sensitive to soil background, making it unsuita
ble for extreme low or high vegetation coverage con
ditions. Other vegetation indices, such as soil-adjusted 
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vegetation index (SAVI) (Huete 1988), vegetation con
dition index (VCI) (Kogan 1995), and vegetation para
meters like leaf area index (LAI) (Sun et al. 2022), have 
also been employed for ecological environment 
monitoring.

To address the limitations of vegetation indices, 
a more complicated remote sensing-based index that 
takes into consideration multiple environmental com
ponents has been proposed. For example, Xu (2013) 
integrates four environmental components (green
ness, wetness, dryness, and heat) through principal 
component analysis (PCA) to generate the remote sen
sing-based ecological index (RSEI), which could effec
tively reveal regional ecological quality. The RSEI has 
been utilized in a variety of ecological environment 
monitoring applications (Xu et al. 2019; Qureshi et al.  
2020; Sun et al. 2020), including in mining areas (Li 
et al. 2021). However, existing literatures often migrate 
evaluation methods from other scenes, ignoring the 
complex landscape features and environmental vul
nerabilities in opencast mining areas (Padmanaban 
et al. 2017; McKenna et al. 2020; Song et al. 2020). 
Opencast mining areas contain multiple land cover 
types, making it unscientific to use the same evalua
tion indicators for different land cover types. Coal 
mining activities cause irreversible effects on the envir
onment, such as vegetation degradation, soil quality 
decline, and water and air pollution (Gao et al. 2021), 
requiring a comprehensive consideration of various 
environmental components for accurate evaluation. 
Thus, a comprehensive remote sensing ecological 
environment evaluation method is crucial for opencast 
mining areas.

In summary, the current remote sensing monitoring 
methods for the ecological environment in opencast 
mining areas are inadequate due to their inability to 
accurately handle the diverse landscape there, and the 
development of a suitable monitoring method 
requires accurate land cover classification and the 
extraction of relevant environmental factors. To 
address this need, this study aims to (1) establish 
a preliminary standard for land cover classification in 
opencast mining area and (2) propose 
a comprehensive mining ecological index (CMEI) for 
the purpose of monitoring the ecological environment 
in mining areas. The proposed CMEI is then tested 
through a case study in Xilinhot, Inner Mongolia of 
China.

The organization of this article is outlined as follows. 
Section 2 describes the study area and datasets, includ
ing Landsat and MODIS products. Detailed descrip
tions regarding the implementation of the CMEI, 
including the land cover classification and indicator 
retrieval, are described in Section 3. The results of the 
ecological environment evaluation performed using 
the CMEI in Xilinhot are presented in Section 4. 
Section 5 discusses the method applicability, causes 

of uncertainty, and remaining issues to be improved. 
This article concludes in Section 6 with a summary of 
the results.

Study area and materials

Study area

The study area of this research is Xilinhot, the capital of 
Xilin Gol League, Inner Mongolia, China. Located 
approximately 620 km northwest of Beijing, the city 
has a mid-temperate semi-arid continental climate, 
with an average annual temperature as 3.49°C and 
average annual precipitation of 278.44 mm. The major
ity of the rainfall occurs from June to August (Yiruhan 
et al. 2011). The natural vegetation in the area is mainly 
grassland and the terrain is hilly, with a high elevation 
in the south and low elevation in the north (Lyu et al.  
2020), which makes Xilinhot a fragile ecosystem that is 
highly sensitive to climate change.

Xilinhot is abundant in mineral resources, including 
over 30 billion tons of proven coal reserves. Three 
coalfield mining sites are located within the study 
area, and the largest Shengli coalfield (No. 1 mining 
site in Figure 1), which is estimated to have 22.7 billion 
tons of reserves, is located approximately 10 km north
west of Xilinhot and has favorable conditions for cen
tralized development due to its thick coal seam, 
shallow burial, and simple geological structure (Wu 
et al. 2020). In 2004, the massive mining project at 
Shengli coalfield was initiated and its largest-scale con
struction phase took place in 2006. The other two 
coalfield mining sites (No. 2 and No. 3 in Figure 1) 
share similarities with Shengli coalfield, with smaller 
coal reserves and limited spatial coverage. All three 
mining sites are opencast, which poses a direct threat 
to the surrounding ecological environment.

Materials

In this study, Landsat datasets, including Landsat-5 
Thematic Mapper (TM), Landsat-7 Enhanced Thematic 
Mapper plus (ETM+), and Landsat-8 Operational Land 
Imager (OLI), were utilized for land cover classification 
and most environmental indicator retrieval. Besides, 
the Aqua Moderate Resolution Imaging 
Spectroradiometer (MODIS) daytime and nighttime 
land surface temperature (LST) products were also 
employed to calculate the day-night temperature dif
ference of impervious surfaces.

Landsat data
High standard atmospherically corrected surface 
reflectance (SR) datasets acquired from Landsat-5, 
Landsat-7, and Landsat-8 during the summer of 2005, 
2010, 2015, and 2020 were employed in this study. The 
spatial resolution of the Landsat images is 30 m, and 
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the temporal resolution is 16 days. The datasets have 
been atmospherically corrected using either the LaSRC 
(for Landsat-8) or LEDAPS (for Landsat-5 and 7) algo
rithms, and they include a cloud, shadow, water, and 
snow mask generated using CFMASK, as well as a per- 
pixel saturation mask (Zhu et al. 2015). The Landsat-8 
OLI has five visible and near-infrared (VNIR) and two 
short-wave infrared (SWIR) bands, while Landsat-5 TM 
and Landsat-7 ETM+ contain four VNIR and two SWIR 
bands, which are all processed to orthorectified SR. 
Only the VNIR bands were utilized for environmental 
indicator retrieval. The detailed spectral range of each 
band for each sensor is listed in Table 1. The spectral 
ranges of the blue, green, and red bands of the TM/ 
ETM+ and OLI are similar; however, difference appears 
in the NIR band. The narrower width of the OLI NIR 
band reduces the impact of aerosol contamination, 
leading to a more stable NIR signal from the land 
surface.

The pre-processing of the Landsat datasets involved 
two steps. First, pixels contaminated by clouds and 
cloud shadows were removed by consulting the 
Landsat quality control band. Second, monthly com
posite surface reflectance for the years 2005, 2010, 
2015, and 2020 was generated using the mean com
posite algorithm, which was calculated as the average 
of all available Landsat observations for each band in 
a specific month of each year. The time-series Landsat 
images for all 12 months of the year were used for land 
cover classification, and monthly composite surface 

reflectance of August was used for most environmen
tal indicators’ retrieval. Due to a large portion of the 
study area had invalid values in August 2005, Landsat 
observations from the last half of July and the first half 
of September were also included in the summer sur
face reflectance composite for 2005.

MODIS product
Daytime and nighttime land surface temperature 
(LST) data from C6 (collection 6) Aqua MODIS LST 
and emissivity product (MYD11A2) was utilized in 
this study to quantify the day and night tempera
ture difference for impervious surfaces. The data 
covers the summer months of 2005, 2010, 2015, 
and 2020. The MYD11A2 measures the temperature 
of Earth’s surface thermal emission at local times of 
approximately 13:30 and 01:30, which are believed 
to provide the highest and lowest LST during a day 
compared to other MODIS LST measurements. 
Eight-day composite LST values were derived from 
the MYD11A2 product by averaging the values from 
the corresponding daily files and were projected 
onto a 1-km sinusoidal grid (Wan 2014).

The monthly composite LST of the relevant year in 
August was obtained by taking the maximum value 
composite of the 8-day MYD11A2 LST product. The LST 
dataset was in a 1-km sinusoidal grid format, which 
was then transformed into a WGS-1984 UTM coordi
nate system. The spatial resolution of the data was 
resampled to 30 m to match the Landsat images.

Figure 1. Location of the study area – Xilinhot, in a map of northern China. The background imagery on the right-hand side 
enlarged map is from false-color composite Sentinel-2 multispectral images in the summer of 2021. Three coalfield mining sites 
within the study area are marked with yellow squares.

Table 1. Bands setting in VNIR for TM, ETM+, and OLI sensors.
Band name Landsat-5 TM & Landsat-7 ETM+ Landsat-8 OLI

Blue 0.45–0.52 μm (B1) 0.45–0.51 µm (B2)
Green 0.52–0.60 μm (B2) 0.53–0.59 µm (B3)
Red 0.63–0.69 μm (B3) 0.64–0.67 µm (B4)
NIR 0.77–0.90 μm (B4) 0.85–0.88 µm (B8)
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Methods

The procedures for calculating the comprehensive 
mining ecological index (CMEI) in mining areas consist 
of the following steps: (1) land cover classification, (2) 
retrieval of environmental indicators, (3) normalization 
of indicators, and (4) principal component analysis. The 
entire workflow is illustrated in Figure 2.

Land cover classification

In this study, a preliminary land cover classification 
scheme was proposed for the semi-arid regions 
where opencast mines are prevalent, as existing land 
cover and land use products and technical standards 
have not taken into account the unique land cover 
types found in mining areas, such as dumping sites. 
The scheme includes the basic land cover types of 
vegetation, water, impervious surface, and mine. The 
vegetation land cover type was further divided into 
forest, grassland, farmland, bare land, mine dumping 
site, and backfilling site. Bare land is defined as an area 
where the duration of no vegetation growth exceeds 
a threshold in a given year, and it may have a short 
period of vegetation growth in the growing season. 
The mine type was sub-divided into mining pit and 
waste site.

Land cover in the study area for the years 2005, 
2010, 2015, and 2020 was generated using time- 
series Landsat images and the maximum likelihood 
classification algorithm. The training samples were 
stratified using in-situ investigation and interpretation 
of multi-temporal, high-spatial resolution Google Earth 

images, with approximately 600 samples collected for 
each year. The inputs for the classification model were 
time-series multispectral Landsat surface reflectance 
over an entire year with a temporal interval of half 
a month. The output was the land cover type, with 
70% of the samples used for training and 30% for 
validation. Finally, some misclassified pixels located in 
land cover transition zones were manually modified to 
improve overall accuracy.

Retrieval of environmental indicators

Vegetation and bare land
Various remotely sensed indicators were utilized to 
assess the ecological environment from the perspec
tive of vegetation growth, soil moisture, and soil 
organic status for vegetation and bare land. The spe
cific indices employed for this purpose will be 
described later. Additionally, an air quality indicator is 
also considered, and its retrieval method will be out
lined in section 3.2.3.

The NDVI was utilized as an indicator of vegetation 
growth status. It is a commonly used vegetation index 
for vegetation dynamic monitoring and is calculated as 
the difference between reflectance in NIR and red 
spectral bands, normalized by their sum. The NDVI 
equation is defined as follows (Rouse et al. 1974): 

NDVI ¼ ρNIR� ρRed
ρNIRþρRed

# (1) 

where ρNIR is the surface reflectance of the NIR band 
and ρRed is the surface reflectance of the red band. The 
red and NIR bands correspond to band 3 and band 4 

Figure 2. Workflow of comprehensive mining ecological index (CMEI) calculation.
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for Landsat-5 TM and Landsat-7 ETM+, respectively, 
and in Landsat-8 OLI they correspond to band 4 and 
band 5. Despite the observed discrepancy in NDVI 
values derived from different Landsat sensors, the 
magnitude of this difference is minimal and falls within 
an acceptable range for our specific application 
(Vogelmann et al. 2001; Roy et al. 2016; Huang et al.  
2021).

The modified perpendicular drought index (MPDI) 
was utilized to assess soil moisture conditions (Ghulam 
et al. 2007). This index takes into account the fractional 
vegetation coverage (FVC) and minimizes the influ
ence of vegetation to a certain extent. It measures 
the distance between a pixel and the soil line in the 
red-NIR reflectance feature space. The equation for 
MPDI is as follows: 

MPDI ¼
ρRedþM�ρNIR� fv ρRed;vþM�ρNIR;vð Þ

1� fvð Þ
ffiffiffiffiffiffiffiffiffi
M2þ1
p # (2) 

where ρNIR and ρRed are the surface reflectance of the 
NIR and red bands, respectively. M represents the slope 
of the soil line in the red-NIR spectral space, and fv is 
the FVC of the specific pixel. The values of ρRed;v and 
ρNIR;v , which represent the red and NIR surface reflec
tances of pure vegetation pixel, were set as 0.05 and 
0.50, respectively, as recommended by the index pro
poser for quick application with acceptable accuracy 
(Ghulam et al. 2007). The slope of the soil line, M, was 
automatically calculated as per reference (Qin et al.  
2012), and the FVC was estimated using a dimidiate 
pixel model with NDVI as follows: 

fv ¼
NDVI� NDVImin

NDVImax � NDVImin

� �2
# (3) 

where NDVImin and NDVImax represent the NDVI values 
of completely bare land pixel and fully covered vege
tated pixels in the study area. In this study, we used the 
3% and 97% values of the NDVI statistical histogram 
over the study area to represent NDVImin and NDVImax , 
with values of 0.25 and 0.84, respectively.

The normalized difference soil index (NDSI) was 
used as the indicator of soil organic matter (Deng 
et al. 2015). It was calculated as the difference between 
the reflectances at NIR and blue spectral bands normal
ized by their sum: 

NDSI ¼ ρNIR � ρBlue
ρNIRþρBlue

# (4) 

where ρNIR and ρBlue represent the surface reflectance 
of NIR and blue bands.

Water
The chlorophyll-a concentration and total suspended 
matter (TSM) concentration, which are widely used in 
studies of water quality assessment (Bilotta et al. 2012; 
Ansper and Alikas 2019), were adopted as indicators of 
inland water quality. The retrieval algorithm employed 
was multi-layer back-propagation (BP) neural 

networks, with in-situ measurements of chlorophyll-a 
and TSM concentrations serving as the training data
set. The inputs of the model were the blue, green, red, 
and NIR band surface reflectance values of Landsat 
imagery, while chlorophyll-a and TSM concentrations 
were treated as outputs. The S-curve hyperbolic tan
gent function was used as the transfer function in the 
hidden layer of the BP neural networks, while a linear 
function was utilized in the output layer. The maxi
mum number of training epoch was set to 1000, with 
a learning rate of 0.001. To expedite convergence of 
the model and improve its generalization, the inputs 
and outputs were standardized to the range of −1 to 1 
using a maximum-minimum normalization method.

Air quality
The concentrations of PM2.5 and PM10 were 
selected to represent air quality and employed as 
environmental indicators for vegetation, bare land, 
and impervious surface land cover types. They were 
estimated using a combination of Landsat remotely 
sensed imagery, meteorological data, and ground- 
based synchronized PM2.5 and PM10 observations, 
with a geographically weighted regression model. 
The aerosol optical depth (AOD) was first retrieved 
from Landsat data using a combination of dark 
object and deep blue algorithms, which effectively 
improved the accuracy and spatial coverage of the 
AOD (Sorek-Hamer et al. 2015). The geographically 
weighted regression model not only showed the 
global variations in spatial characteristic of PM2.5 
and PM10 but also took local diversity into account, 
resulting in better performance compared to 
a traditional multi-linear regression model.

Impervious surface
The concentration of PM2.5, PM10, and day/night tem
perature difference were chosen as the environmental 
indicators for impervious surfaces. The day/night tem
perature difference was calculated as the difference 
between daytime and nighttime land surface tempera
ture (LST) derived from the MODIS LST product as 
equation (5): 

ΔT ¼ LSTday � LSTnight # (5) 

where LSTday represents daytime LST and LSTnight repre
sents nighttime LST.

Normalization of indicators

The normalization of environmental indicators was 
performed to standardize the values of each parameter 
between 0 and 1, enabling comparative analysis 
between indicators. The higher the normalized value 
of the indicator, the better the ecological quality it 
represents. Conversely, a lower value indicates lower 
ecological quality.
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For parameters positively correlated with ecological 
quality, such as NDVI and NDSI, the normalization 
equation is given as follows: 

Xnor ¼

0 X � Xmin
X� Xmin

Xmax � Xmin
Xmin < X < Xmax

1 X � Xmax

#

8
<

:
(6) 

where X represents the original value of the parameter 
prior to normalization, Xnor is the normalized value, 
which falls within the range of 0 to 1. Xmin represents 
the minimum threshold value of the parameter during 
normalization (below which the ecological quality is 
the worst), and Xmax represents the maximum thresh
old value of the parameter.

For parameters negatively correlated with ecologi
cal quality, such as MPDI, water chlorophyll-a concen
tration, water TSM concentration, PM2.5 and PM10 
concentration, and day/night temperature difference, 
the normalization equation is as follows: 

Xnor ¼

1 X � Xmin
Xmax � X

Xmax � Xmin
Xmin < X < Xmax

0 X � Xmax

#

8
<

:
(7) 

where X represents the original value of the parameter, 
Xnor represents the normalized value within the range 
of 0 to 1. Xmin represents the minimum threshold value 
of the parameter (below which the ecological quality is 
the best), and Xmax represents the maximum threshold 
value of the parameter (above which the ecological 
quality is the worst).

The minimum and maximum thresholds for NDVI 
and NDSI were derived from the multi-year statistics of 
the spatial and temporal distributions of these para
meters in the study area. The minimum threshold for 
NDVI was set as 0.15 and the maximum as 0.84, while 
for NDSI, the minimum was set as 0.1 and the max
imum as 0.65. The minimum and maximum thresholds 
for MPDI were established based on the multi-year 
spatiotemporal statistics of the study area and typical 
MPDI values in literature (Zhang et al. 2015), with 
a minimum of 0.05 and a maximum of 0.77. The thresh
olds for PM2.5 and PM10 were set according to the 
Ambient Air Quality Standards of China (GB3095– 
2012), with a minimum of 5 μg=m3 and maximum of 
75 μg=m3 for PM2.5 and a minimum of 10 μg=m3 and 
a maximum of 150 μg=m3 for PM10. Despite the tem
perature difference derived from MODIS LST differed 
from that of air temperature, its relative value was still 
meaningful, and its thresholds were determined based 
on multi-year spatial and temporal distributions of this 
parameter in the study area, with a minimum of 25°C 
and a maximum of 40°C. The minimum and maximum 
thresholds for water chlorophyll-a concentration were 
determined based on typical values in literature, with 
a minimum of 5μg=L and a maximum of 80μg=L, while 
the minimum and maximum thresholds for water TSM 
concentration were set as 10mg=L and 120mg=L, 

respectively, based on related references (Bilotta et al.  
2012; Ansper and Alikas 2019).

CMEI calculation

Principal component analysis (PCA) was further 
employed to generate the comprehensive mining eco
logical index (CMEI) by normalizing environmental 
indicators for each land cover type. For mine land 
cover type, which includes mining pit and wasted 
site, a CMEI of 0 was assigned directly. The first com
ponent of PCA result was considered as the CMEI, and 
it was calculated as follows: 

Y ¼
Pn

i¼1 ki � Xi # (8) 

Here, Xi represents the ith normalized indicator of 
a specific land cover type, and ki represents the weight 
of indicator i of the first component after the PCA 
process. For vegetation, bare land, mine dumping 
sites and backfilling site, n ¼ 5 and the input indicators 
are normalized NDVI, MPDI, NDSI, PM2.5, and PM10. 
For impervious surface, n ¼ 3 and the input indicators 
are normalized day/night temperature difference, 
PM2.5, and PM10. For water body, n ¼ 2 and the 
input indicators are normalized chlorophyll-a concen
tration and TSM concentration.

The resulting CMEI values of different land cover 
types were ultimately spatially combined to generate 
a comprehensive CMEI map of the entire study area.

Results

Land cover changes over the study area

Figure 3 displays the land cover changes in the study 
area from 2005 to 2020. The Shengli coalfield was the 
only operating mining site in 2005, while two addi
tional mining sites emerged by 2010. The mining and 
bare land in the eastern part of the study area have 
shown an expansion trend with the direction of expan
sion changing from east and north between 2005 and 
2010 to west between 2010 and 2015. Vegetation 
restoration occurred at the same time with the expan
sion of mining land and bare land, leading to the 
formation of dumping sites (yellow color in Figure 3) 
in the area. The dumping site is an ecologically fragile 
area where ecological restoration projects have been 
mainly carried out. The grassland has decreased due to 
the expansion of mining and impervious surface, while 
the spatial distribution of other land cover types such 
as forest, cropland, and inland water has remained 
stable.

To quantify land cover changes of Xilinhot from 2005 
to 2020, we calculated the percentage of each land 
cover type over the study area for the 4 years and 
presented the results in Table 2. Grassland covered the 
majority of the area and it decreased from 90.18% in 
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2005 to 79.35% in 2020. Impervious surfaces significantly 
increased from 4.81% in 2005 to 12.01% in 2020, result
ing in the decline of grassland. Urbanization was the 
main driving force for the increase in impervious surface 
area. Mining-related land cover changes, including the 
expansion of mining sites, dumping sites, and backfilling 
sites, also showed an overall upward trend, increasing 
from 0.21% in 2005 to 4.05% in 2020 (Table 2). Cropland 
and inland water remained relatively constant due to 
strict protection policies in China for farmland and the 
high value of water resources in the semi-arid region.

Spatial and temporal variations of CMEI

The CMEI proposed by this work was utilized to quan
titatively evaluate the ecological environment quality 
of the study area. Figure 4 displays the spatial and 

temporal distribution of CMEI in Xilinhot, revealing 
that forest and cropland exhibit the highest ecological 
quality with CMEI. This is due to the dominant weight 
assigned to vegetation greenness in CMEI calculation 
for these basic land cover types, which is notably 
greater than other land cover types. The urban area 
of impervious surface ranked the second highest with 
a suitable temperature difference and air quality for 
human settlements. The CMEI value of grassland and 
mine dumping and backfilling sites varied spatially and 
temporally, because they were largely dependent on 
vegetation and soil status.

The CMEI value of bare land remained relatively 
constant over the 4-year period with a range of 0.33 
to 0.39. The stable performance of CMEI over the years 
indicates the reliability of the CMEI as there was no 
systematic management for bare land, such as soil 

Figure 3. Spatial distribution of land cover types across the study area according to the proposed mining area land cover 
classification scheme for 2005, 2010, 2015 and 2020.

Table 2. Percentage of each land cover type over the study area for 4 years.
2005 2010 2015 2020

bare land 0.38 0.40 1.13 0.91
impervious surface 4.81 8.11 11.25 12.01
cropland 2.48 2.24 2.18 2.07
forest 1.63 1.41 1.38 1.33
water 0.31 0.28 0.25 0.28
grassland 90.18 85.60 80.35 79.35
dumping site/backfilling site 0.09 1.11 1.95 2.26
mining pit/waste site 0.12 0.85 1.51 1.79
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fertilization, in the study area during the past two 
decades. Forest and cropland exhibited the highest 
CMEI with a mean value of 0.84 to 0.96, with little 
variation except for an abnormal low value of the 
forest in 2005, which might have been caused by the 
relatively low quality of Landsat data during that 
period.

The ecological environment quality of grassland 
gradually increased from 0.53 to 0.59 over the years, 
even though its area has been shrinking continuously. 
The most significant increment of CMEI occurred in 
mining dumping and backfilling sites, from 0.15 in 
2005 to 0.33 in 2020. Ecological restoration projects 
have been implemented in these sites, promoting the 
ecological quality from a very low level to a level as 
that of bare land. Regarding the effect of ecological 
restoration, the closer it is to the mining pit, the worse 
the effect will be, mainly because the vegetation 
restoration work started from the furthest distance 
and moves progressively towards the pit. Therefore, 
the earlier the vegetation restoration work began, the 
more time the vegetation had to grow and develop, 
resulting in better vegetation quality. After the vegeta
tion restoration work is completed, the area closer to 
the mine is more likely to be affected by human activ
ities, increasing the probability of degradation.

In the next section, a specific coalfield mining site, 
Shengli coalfield (No. 1 mining site in Figure 1), will be 

analyzed as an example to investigate how ecological 
quality changes in dumping and backfilling sites with 
the ecological restoration projects implemented, using 
CMEI as the indicator.

CMEI dynamics on mine dumping site with 
ecological restoration

The Shengli coalfield, the largest one in the study area, 
was selected as an example to investigate the 
dynamics of the CMEI during the ecological restoration 
process of mine-dumping sites. Mining operations 
began in 2004, and by 2005, two small dumping sites 
(B1 and B2 in Figure 5) had appeared in the north and 
southeast of the mining pit. The CMEI value of these 
dumping sites was very low, indicating poor ecological 
quality at that time. Five years later in 2010, the area of 
mining pit and dumping sites had greatly expanded, 
and a new dumping site (B3 in Figure 5) emerged in 
the northwest of the pit. At the same time, a new 
mining pit (A2 in Figure 5) and dumping site (B4 in 
Figure 5) were under construction in the southwest of 
the mining area. During this period, ecological restora
tion on dumping sites began with the planting of tree 
and grass to reduce soil exposure. The CMEI value of 
dumping site B1 dramatically increased to 0.55 by 2010 
compared with 2005, and that of dumping site B2 
slightly increased to about 0.21 (Figure 6).

Figure 4. Spatial distribution of CMEI across the study area for 2005, 2010, 2015 and 2020.
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In 2015, the most significant CMEI increment 
occurred in mine dumping site B2, which may have 
been the focus of the ecological restoration project, 
with its CMEI value increasing from 0.21 in 2010 to 0.66 
in 2015 (Figure 6). Dumping site B1 maintained a high 
level of ecological quality, with a constant CMEI value 
of 0.55. The CMEI value of dumping site B3 and B4 also 
increased as their areas expanded. With the massive 
exploitation of the mining pit A1, the early-stage 
exploitation area began to backfill with soil and 
stone, forming the backfilling site, another important 
target of ecological restoration. In 2020, the area of 
backfilling site C1 expanded significantly, and its CMEI 
value increased from 0.17 to 0.27 due to ecological 
restoration (Figure 6). The CMEI value of the mine 
dumping sites remained stable or slightly decreased 

in 2020. Some of these sites (B1 and B2) were already in 
a mature restored status, with relatively high CMEI 
values and ecological quality, while others (B3 and 
B4) were still in the process of restoration.

Discussion

Effective monitoring and assessment of ecological 
restoration performance in mining areas is essential 
for mining management (Du et al. 2020), and remote 
sensing offers a promising solution to this problem as 
it is convenient and cost-effective (Padmanaban et al.  
2017; Li et al. 2020). Remote sensing monitoring has 
advantages such as regularity, easy access, and provid
ing rich information. In contrast, records of land recla
mation work by enterprises are often unreliable, 
making remote sensing monitoring more objective 
and reliable (Hui et al. 2021). However, the use of 
remote sensing for ecological restoration monitoring 
is still challenging due to issues related to remotely 
sensed data acquisition, indicator selection, and 
interpretation.

This article proposes a comprehensive mining 
ecological index (CMEI) based on remote sensing 
data for ecological environment monitoring in 
mining areas and applied it to the ecological restora
tion project assessment of mining areas in Xilinhot, 
Inner Mongolia of China. The CMEI proposed in this 
paper not only considers the vegetation and soil 
indicators commonly used in previous studies 
(Padmanaban et al. 2017; Song et al. 2020) but also 
incorporates indicators reflecting water and air 

Figure 5. Specific land cover transformations and CMEI dynamics of No.1 mining site for 2005, 2010, 2015 and 2020. The mining 
pits and dumping sites have been expanding for the past 20 years due to the mining activities. with the implementation of 
ecological restoration policy, the ecological condition of dumping sites and backfilling site was getting better revealed by multi- 
year CMEI. The upper-left high-resolution image of No. 1 mining site captured in the spring of 2021 is from Google Earth.
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Figure 6. CMEI dynamics of each dumping site or backing 
filling site across Shengli coalfield (No. 1 mining site).
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pollution through a principal component analysis 
method, thus reflecting the overall ecological envir
onment status and changes over time. Another vital 
feature of the CMEI is that it takes into account the 
diversity of landscape features in opencast mining 
areas, and the relevant environmental indicators are 
chosen for different land cover types, which 
improves the accuracy of ecological assessment.

Despite the promising performance of CMEI, there 
are still rooms for improvement. The accuracy and 
effectiveness of CMEI depend on accurate land cover 
classification. A maximum likelihood algorithm was 
used in this study, but the classification accuracy is 
limited, especially in boundary regions with land cover- 
type transitions. More advanced machine learning 
methods, such as deep learning algorithms, could be 
used to improve classification accuracy automatically 
(Hong et al. 2021). The retrieval accuracy of each indi
cator also significantly affects the performance of CMEI. 
Therefore, it is crucial to select appropriate indicators 
for each land cover type to reduce the error propaga
tion as much as possible. Furthermore, the discrepancy 
in the spatial resolution of Landsat derived indicators 
(e.g. NDVI) and MODIS derived indicators (e.g. day/night 
temperature difference) may jeopardize the spatial con
tinuity and accuracy of the result, necessitating the use 
of high spatial resolution temperature or temperature 
indicators. Additionally, the thresholds used in indicator 
normalization are still empirical and require further 
testing for their applicability in other areas.

The multi-year evaluation of the Xilinhot mining 
area revealed an overall improvement in the ecological 
environment, consistent with previous research find
ings (Fu et al. 2017; Li et al. 2023). The mine pits 
experienced the fastest degradation rate, which was 
attributable to the massive mining activities. Moreover, 
other artificial factors such as grazing and ecological 
restoration may also have impacts on the change in 
the CMEI, but they were difficult to quantify. For spe
cific mine dumping site where ecological restoration 
project carried out, the improvement was significant. 
The ecological restoration project carried out in 
a specific mine dumping site led to remarkable 
improvements. The Shengli coalfield initiated the eco
logical restoration project in 2006 and completed its 
first round by 2013. A new round of ecological restora
tion began in 2016, consistent with the changes in the 
CMEI of the dumping and backfilling sites (B1 and C1 in 
Figure 6). Some dumping sites (B1 and B2 in Figure 5) 
in the Shengli coalfield have attained a stable high 
ecological level, indicating the success of the restora
tion project. However, other methods (B3 and B4 in 
Figure 5) have not reached the ultimate stage, requir
ing more attention during the subsequent restoration 
project. While the ecological restoration may have 
mitigated the negative impact of mining on vegeta
tion, the results confirm its effectiveness.

The construction and operation of the CMEI align 
with the goals of regional sustainable development 
(SDGs) of the United Nations (UN) (Moomen et al.  
2019). Since CMEI only needs to be calculated through 
satellite images, it has the potential to realize the eva
luation of the ecological environment of various open
cast mining areas at a large scale and to reveal the 
current status of the ecological environment in open
cast mining areas. In this sense, the ecological environ
ment status of global opencast mining areas would be 
clarified and can be updated year-by-year, which is of 
great significance for global sustainable development.

Conclusion

This study proposes a comprehensive mining ecological 
index (CMEI) for ecological environment monitoring in 
opencast mining areas using remote-sensing data. The 
CMEI takes into account various environmental indica
tors, such as greenness, wetness, heat, air quality, and 
water quality, which are normalized and processed 
through PCA to extract the first component as CMEI. 
Compared with existing remote sensing-based indices 
for the ecological environment monitoring, the pro
posed CMEI incorporates indicators reflecting water 
and air pollution, considers the characteristics of differ
ent land cover types and can be calculated through 
satellite images, enabling large-scale and comprehen
sive evaluation of the ecological environment. The eva
luation of the Xilinhot mining areas using CMEI reveals 
that the ecological environment of coalfield dumping 
sites and backfilling sites has improved over the past 15  
years, while the ecological environment of other land 
types has remained stable. The dumping site and back
filling site of Shengli coalfield were specifically assessed, 
and the CMEI showed a stepwise increment over time. 
The CMEI has the potential to evaluate global opencast 
mining areas quickly and efficiently, clarifying their eco
logical environment status and contributing to global 
sustainable development, and accurate land cover clas
sification and suitable choice of environmental indica
tors for different land cover types still require further 
exploration to improve the performance of CMEI.
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