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Abstract— Leaf area index (LAI) and fraction of photosynthet-
ically active radiation (FPAR) products at regional and global
scales have already been extensively and routinely generated
from medium-resolution sensors. However, there is a lack of
high-resolution LAI/FPAR product, which is especially essential
for crop growth and drought monitoring of cropland in patches.
This article proposes a processing framework for the deriva-
tion of decameter cropland LAI and FPAR in the Northern
China plain from Sentinel-2 surface reflectance data with a
random forest (RF) algorithm by exploiting the capabilities of
the Google Earth Engine (GEE) cloud platform. The training
database is generated from the spatially aggregated Sentinel-2
surface reflectance and the corresponding Moderate Resolution
Imaging Spectroradiometer (MODIS) LAI/FPAR product over
homogeneous cropland, and the training samples are strictly
filtered for the best quality. RF is then trained over the processed
Sentinel-2 surface reflectance and the filtered MODIS LAI/FPAR
under two input groups—one group is for Sentinel-2 spectral
bands of 10-m resolution only, and the other group supplements
the Sentinel-2 red-edge (RE) and shortwave infrared (SWIR)
bands of 20-m resolution. Extensive comparisons and validation
are carried out, and they demonstrate that the new method
can generate spatial and temporal consistent LAI/FPAR with
MODIS at high spatial resolution. The retrieval accuracy is
slightly better for 20-m input groups than that for 10-m input
groups, confirming the value of RE and/or SWIR in cropland
LAI/FPAR estimate. This article also demonstrates that GEE is
a suitable high-performance processing tool for high-resolution
biophysical variables estimation.

Index Terms— Cropland, fraction of photosynthetically active
radiation (FPAR), Google Earth Engine (GEE), leaf area
index (LAI), Moderate Resolution Imaging Spectroradiometer
(MODIS), Sentinel-2.

I. INTRODUCTION

THE world’s population is projected to be 10 billion by the
year 2050, which was estimated by Food and Agriculture
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Organization (FAO) of the United Nation (UN) [1], and
it boosts great agricultural demand for food security. The
increase in food production must be accompanied by a sus-
tainable management of agricultural lands, which requires
the dynamic and massive monitoring and forecasting of crop
growing status and yields [2]. Remote sensing appears as
an essential tool to respond to the abovementioned require-
ments since it offers a nondestructive mean of providing
recurrent information from the local to the global scale
in a systematic way, thereby enabling the characteriza-
tion of the spatial and temporal variability within a given
region.

Leaf area index (LAI) and fraction of photosynthetically
active radiation (FPAR) are of the greatest importance among
those parameters, which are related to crop-growing status and
yields. LAI is a canopy structure parameter and is defined
as the total one-sided area of photosynthetic tissue per unit
ground area [3]. FPAR quantifies the fraction of the solar
radiation absorbed by live leaves in the spectral range of
400–700 nm for the photosynthesis activities [4], [5].

Optical remote sensing data is widely used for LAI and
FPAR estimation; it can be categorized into empirical and
physical ones by the major methods. Empirical methods
establish the relationship between satellite-derived reflectance
or vegetation indices and LAI/FPAR using statistical regres-
sion or advanced nonparametric models [6]–[8]. It is easy
to implement but requires calibrations for different vege-
tation types with huge field observations, thus is mostly
applied in local applications [9]. The radiative transfer (RT)
equation naturally links the radiation intensity measured by
satellite-borne sensors and the land surface vegetation parame-
ters by describing the motion of photons within the canopies,
and that is why it is named as physical [5], [10]. Vegetation
variables are retrieved with RT model inversion by taking
sensor-measured intensity or reflectance and other auxiliary
information as inputs. Such an inversion process is quite
computational demanding, thus many retrieval techniques,
such as lookup table (LUT) [11], [12] and machine learn-
ing algorithms [13]–[15], are implemented to speed up this
process.

A variety of global LAI/FPAR products are derived from
various satellite data using the abovementioned methods. The
majority of those LAI/FPAR products, represented by Mod-
erate Resolution Imaging Spectroradiometer (MODIS) [11],
Carbon cYcle and Change in Land Observational Products
from an Ensemble of Satellites (CYCLOPES) [15], and
Geoland2/BiopPar version (GEOV) [13], are mainly in coarse
spatial resolution of 300 m–8 km and the temporal interval
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of 4–16 days, which are suitable for large-scale long-term
monitoring of natural vegetation; however, they are not
adequate for cropland monitoring especially when the cropland
is in patches or fast-growing stages. High-resolution satellite
data, such as Landsat TM/ETM+/OLI, which is suitable for
local to regional cropland monitoring, does not have sustained
and consistent LAI/FPAR product for ready-to-use directly.
Besides, a single Landsat satellite has a quite long revisit
period, that is, 16 days, under the cloudless circumstance,
results in the missing of extensive crop information during
fast-growing stages.

The emergence of Sentinel-2 effectively meets the demands
of spatial and temporal resolution in the process of crop-
land monitoring. Sentinel-2 is a wide-swath, high-resolution,
and multispectral imaging mission supporting the European
Space Agency (ESA) Copernicus Land Monitoring stud-
ies, which was launched in 2015 (Sentinel-2A) and 2017
(Sentinel-2B) [16]. It provides up to 10-m resolution visible to
shortwave infrared (SWIR) spectral bands in a five-day revisit
period, thus is of great benefit to crop LAI/FPAR retrieval and
growth monitoring [17]. On the other hand, high spatial and
temporal resolution brings in high computational demand, and
local personal computers and small servers cannot undertake
the operational regional and global data computation timely.
Google Earth Engine (GEE) offers us a free and conve-
nient cloud-computing platform for geospatial analysis at the
petabyte scale [18], which dramatically speeds up the data
processing efficiency. Numerous regional and global remote
sensing applications have been conducted on GEE, which
includes land cover mapping [19], [20], vegetation monitor-
ing [21], [22], land surface temperature estimation [23], and
hydrological process [24], [25].

A high-resolution cropland LAI/FPAR map, which is spa-
tially and temporally consistent with those medium-resolution
LAI/FPAR products, is of great benefit and urgent demand
for agricultural applications. As such, the goal of this work
is to establish a retrieval chain for decameter LAI/FAPR
in Northern China plain cropland from Sentinel-2 surface
reflectance data on the GEE platform. The retrieval algorithm
is a random forest (RF) regression and is trained with spatial
and temporal representative best-quality MODIS LAI/FPAR
values in homogeneous cropland. The retrieved LAI/FPAR
values are compared to the original MODIS products, and the
LAI is also validated by the ground measurements.

The organization of this article is as follows. Section II
describes the study area and data sets, which include
Sentinel-2, FROM-GLC, and MODIS LAI/FPAR products.
Detailed descriptions regarding the implementation of the
retrieval algorithm, including the selection of the best-quality
training samples, are described in Section III. Validation
and comparisons of the LAI/FPAR retrieved from Sentinel-2
surface data by the proposed method with the original MODIS
LAI/FPAR products and ground measurements are presented
in Section IV. Section V discusses the method applicability,
causes of uncertainty, and remaining issues to be improved.
This article concludes in Section VI with a summary of the
results.

Fig. 1. Location of the study area, including Hebei, Henan, Shandong,
Jiangsu, Anhui, Beijing, and Tianjin outlined with red boundary. The back-
ground image is from FROM-GLC10 land cover data set.

II. STUDY AREA AND DATA SET

A. Study Area

Our study area contains five provinces and two munici-
palities, including Hebei, Henan, Shandong, Jiangsu, Anhui,
Beijing, and Tianjin, of China across the Northern China plain.
The spatial extent of the study area is 29◦ N–43◦ N and
110◦ E–123◦ E, which is illustrated in Fig. 1. We focus on
the cropland on the plain over the study area only, and it
is extracted based on the FROM-GLC10 land cover data set
(detail description of data set in Section II-B) with an overall
area over 300 000 km2. The region has a temperate and warm
temperate monsoon (wet summer and dry winter) climate with
an average annual temperature of 11 ◦C–15 ◦C and an average
annual precipitation of 500–900 mm. Winter wheat (Triticum
aestivum L.) and maize (Zea mays L.) are the main crops
in this region, which are under rotation irrigated management
practices. Wheat is sowed in October and harvested in May of
next year, while maize is cultivated from June to September on
average [9], [26].

B. Data Set

1) Sentinel-2: The Multispectral Instrument (MSI) boarded
on Sentinel-2 satellite acquires data in 13 spectral bands
including visible, near-infrared, and SWIR ranges with a spa-
tial resolution of 10–60 m and a five-day revisit period when
Sentinel-2A and Sentinel-2B are combined under cloudless
circumstances [16]. The detailed information of the Sentinel-2
band setting is listed in Table I. Level-2A surface reflectance
data set of Sentinel-2 is used in this study as the inputs of
LAI/FPAR retrieval chain.

2) FROM-GLC: Finer Resolution Observation and Moni-
toring of Global Land Cover (FROM-GLC) product in 10-m
resolution for the year of 2017 was used to delineate cropland
in this article over our study area. FROM-GLC10 is an updated
version of FROM-GLC30 (30-m resolution) with a stable clas-
sification accuracy, achieved by transferring a 30-m resolution
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TABLE I

BAND INFORMATION OF SENTINEL-2A/MSI

sample set and adding Sentinel-2 data set by using an RF
classifier in the GEE platform [27]. FROM-GLC10 shows
more spatial detail than any other courser resolution land
cover product, and it is the latest land cover map that matches
the 10-m spatial resolution of Sentinel-2 over our study area.
In addition, 64.39% of the study area is covered by cropland,
and the percentages of forest, grass or shrub, imperious, and
water are 18.31%, 5.37%, 8.28%, and 3.65%, respectively.

3) MODIS LAI/FPAR Product: The latest Collection 6 (C6)
Terra and Aqua MODIS LAI/FPAR products (MCD15A3H)
are used in this study for LAI/FPAR training data set gener-
ation. MCD15A3H provides four-day composite 500-m reso-
lution LAI/FPAR product in Sinusoidal projection. The main
algorithm of the products is based on the 3-D RT equation,
which links the surface spectral bidirectional reflectance fac-
tors (BRFs) to structural and spectral parameters of the veg-
etation canopy, and the backup empirical algorithm is based
on biome-specific relations between the normalized difference
vegetation index (NDVI) and LAI/FPAR [5], [11], [28]. The
method chooses the high-quality pixel generated with the
main algorithm available from all the acquisitions of both
MODIS sensors located on NASA’s Terra and Aqua satellites
from within the four-day period. The quality of this data set
was comprehensively evaluated against ground-based mea-
surements and through intercomparisons with other satellite
LAI/FPAR products, with root-mean-square errors (RMSEs)
of 0.66 and 0.15 for LAI and FPAR against ground-based
measurements for all biome types, respectively [29].

III. METHODOLOGY

The retrieval method proposed in this study employs the
RF machine learning algorithm embedded in GEE to retrieve
Sentinel-2 LAI/FPAR from its L2A surface reflectance data
set. High-quality MCD15 LAI and FPAR are used as the
output variables during the model training process. The
whole retrieval chain comprises four steps, which includes
Sentinel-2 pixels screening, MODIS pixels screening, training
samples generation, and LAI/FPAR retrieval. A schematic
flowchart outlining the method is shown in Fig. 2.

A. Sentinel-2 Pixels Screening

Sentinel-2 pixels screening aims to retain the best-quality
homogeneous cropland pixels and filter out noncropland and

Fig. 2. Flowchart of Sentinel-2 LAI/FPAR retrieval with RF on GEE.

contaminated pixels including cloud, snow, and other high
reflected surface. Cloud pixels are removed first using the
cloud mask provided by Sentinel-2 L2A original data set. For
snow cover and high reflected bare land surface that often
appears in the winter and early spring, we recognize them fol-
lowing the criteria that the surface reflectance of all visible and
near infrared (VNIR) bands of 10-m resolution, that is, 490,
560, 665, and 842 nm, are greater than 0.3 based on multiple
tests for an optimal reflectance threshold to distinguish them.
In this manner, some residual cloud pixels that are failed to
filter by cloud mask could be further removed either. FROM-
GLC10 cropland mask is then applied to the cloud- and snow-
free Sentinel-2 image, and only cropland Sentinel-2 pixels are
retained.

During the training samples generating process, the cropland
masked Sentinel-2 images are then spatially aggregated to a
500-m resolution to match the MODIS data based on the
simple average method. Besides the mean value, standard
deviation and coefficient of variation are also calculated for
each aggregated 500-m pixel. The coefficient of variation
is derived as standard variation normalized by the mean
value, which represents the reflectance heterogeneity within
an aggregated 500-m Sentinel-2 pixel. If the coefficient of
variation is greater than 0.1 for any spectral band in green
(560 nm), red (665 nm), or near-infrared (842 nm), this 500-m
pixel is abandoned because of its high spatial heterogeneity
that may cause large uncertainty for reflectance-LAI/FPAR
relationship at different scales. The landscape spatial het-
erogeneity influences the nonlinear estimation of LAI from
moderate spatial resolution remote sensing data [30]–[32].
To transfer the 500-m reflectance-LAI/FPAR relationship to
10/20-m spatial scale, all the training samples are generated
on an extremely homogenous cropland.

At the same time, the 10-m resolution FROM-GLC10
cropland mask is also spatially aggregated to 500-m resolution.
For this binary map, a pixel of 500-m resolution is regarded as
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cropland only if at least 90% of its subpixels (i.e., 2250 out
of 2500 for 10-m subpixel) are classified as cropland cate-
gory. Finally, 500-m aggregated Sentinel-2 images are further
refined by the 500-m cropland map.

B. MODIS Pixels Screening

We use the ancillary quality-control (QC) labels of each
pixel provided by the MODIS LAI/FPAR product to determine
the best-quality pixels. Only pixels generated by the main
algorithm with or without saturation are retained, and its
saturation status is also recorded for further analysis. The
MODIS LAI/FPAR is then reprojected from the Sinusoidal
to the WGS-84 coordinate to match the processed 500-m
Sentinel-2 data.

C. Training Samples Generation

MODIS LAI/FPAR product chooses the maximum esti-
mation within its four-day composite period [28]. We here
assume that the vegetation status (i.e., LAI and FPAR values)
does not change within a four-day period, thus the Sentinel-2
transits within that period capture the same LAI/FPAR as
MODIS dose. Since the temporal resolution of Sentine-2 is five
days combining Sentinel-2A and 2B, there is one Sentinel-2
image at most during a MODIS composite period, and as
such, we link the 500-m Sentinel-2 image to 500-m MODIS
LAI/FPAR.

Synchronized and overlapped Sentinel-2 and MODIS
LAI/FPAR observations are randomly collected within our
study area in cropland pixels during a MODIS composite
period, and we repeat the sample collecting process throughout
the entire year from 2019 to 2020. A total of 95 000 training
data pairs are collected at first. Because very few samples
are labeled as saturation in MODIS LAI/FPAR quality flag,
we further collect 5000 samples in LAI/FPAR saturation
pixels. As such, there are 100 000 collected training samples,
which are fully spatial and temporal representatives over the
study area.

However, the nonsaturation samples are lognormally distrib-
uted and concentrated in small LAIs, that is, LAI < 1, thus
the training samples are much weighted on sparsely vegetated
condition (Fig. 3). Moderate-to-dense vegetated condition is
what we especially concern about for better retrieval accuracy.
As such, a truncated Gauss distribution restriction in LAI is
applied on nonsaturation samples to abandon many small LAI
samples (Fig. 3).

We then group the samples based on their LAI and FPAR,
and the LAI and FPAR group intervals are 0.5 and 0.1, respec-
tively. Samples whose green (560 nm), red (665 nm), and NIR
(842 nm) surface reflectance fall outside of the 1.5 interquartile
range (IQR) at each LAI or FPAR interval are removed.
IQR is defined as the difference between the 25th and 75th
percentiles, which is a measure of data variability. Outliers
may come from geo-registration error, aerosol contamination,
or incorrect cropland classification, which affect the model
performance. Such uncertainties can be reduced to a certain
extent after the outliers’ removal. The distributions of green,
red, and NIR surface reflectance of Sentinel-2 of training

Fig. 3. LAI frequency histograms of nonsaturation samples before and after
truncated Gauss distribution restriction.

samples over different LAI or FPAR intervals are demonstrated
in Fig. 4. The green and red reflectance decreases while the
NIR reflectance increases as the LAI or FPAR increases. Note
that when the LAI group number is greater than 5 or 6, that
is LAI > 2.5, the reflectance of green, red, and NIR gets
saturated and their uncertainty rises (Fig. 4). There are 46
963 nonsaturation and 10 355 saturation training samples left,
respectively, in the end.

D. LAI/FPAR Inversion Using RF Model

A wide variety of machine learning models are proposed for
regression and function approximation. This study employed
the RF model to retrieve LAI and FPAR from the processed
Sentinel-2 surface reflectance data. An RF is a combination
of multiple classifications and regression trees (CARTs), and
each of them is trained by different subsets of features and
examples [33]. The output of an RF is the mean prediction of
the individual trees. Like bagging, multiple subsample sets are
sampled from the original training set with bootstrap sampling,
and each CART is trained with a subsample set. Instead of
using all the features, a random selection of features is used
to split each node during the construction of each CART. The
main advantage of using RF over other traditional machine
learning algorithms such as a neural network (NN) is that
it can cope with high dimensional problems easily, thanks
to its pruning strategy. In addition, unlike kernel methods,
RF is more computationally efficient. Thus, it has been applied
in many parameter retrieval applications in the remote sens-
ing community, such as LAI, leaf chlorophyll content, and
solar-induced chlorophyll fluorescence [21], [33], [34].

The RF regressor is trained using the LAI/FPAR from
MODIS and the processed Sentinel-2 surface multiple-band
reflectance and its corresponding sun-sensor geometry. Two
sets of training inputs are employed in this study: the first
group (10-m inputs hereafter) is the reflectance of 10-m
resolution, which includes green (560 nm), red (665 nm),
and NIR (842 nm) bands, together with the normalized
sun-sensor geometry, which is the absolute cosine of solar
zenith angle (SZA), view zenith angle (VZA), and relative
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Fig. 4. Whisker boxplots of green (560 nm), red (665 nm), and NIR (842 nm) surface reflectance for different LAIs or FPARs. The boxes and whiskers
indicate the minimum, 25th, 50th, and 75th percentiles and maximum reflectance of a group. The interval of LAI is 0.5 from 0 to 7 for the group 1 to group
14, and the interval of FPAR is 0.1 from 0 to 1 for the group 1 to 10. (a) Green band under LAI groups. (b) Green band under FPAR groups. (c) Red band
under LAI groups. (d) Red band under FPAR groups. (e) NIR band under LAI groups. (f) NIR band under FPAR groups.

azimuth angle (RAA). Blue (490 nm) band is not used because
it is most sensitive to atmospheric scattering effects, which
leads to high uncertainty [35], [36]. The other group (20-m
inputs hereafter) employs the reflectance of both 10- (green,
red, and NIR) and 20-m resolution including RE1 (705 nm),
RE2 (740 nm), RE3 (783 nm), SWIR1 (1610 nm), and SWIR2
(2190 nm). The outputs of the RF model are LAI and FPAR

values. During the RF training process, the number of RF
trees is set as 50 and the minimum leaf population is set as 3.
The models are trained with nonsaturation samples, saturation
samples and all samples, respectively. The training data set
is composed of 70% of all samples, which are selected from
saturation and nonsaturation data set proportionally, while the
remaining 30% samples are regarded as the test data set.
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Fig. 5. Scatterplot of original LAI/FPAR and estimated LAI/FAR from the RF model with 10-m inputs and 20-m inputs on test data sets. (a) LAI with 10-m
inputs. (b) FPAR with 10-m inputs. (c) LAI with 20-m inputs. (d) FPAR with 20-m inputs.

TABLE II

ACCURACY METRICS OF LAI RETRIEVAL ON TEST DATA SET

IV. COMPARISON AND VALIDATION

A. Model Theoretical Performance

In this section, we will evaluate the performance of the
RF model for LAI/FPAR retrieval on the test data set. The
mean absolute error (MAE), RMSE, and Person’s correlation
coefficient (R) are adopted as accuracy metrics to assess the
results quantitatively.

Table II, Fig. 5(a) and (c) show the accuracy results of
LAI retrieval on the test data set. The RF model trained with
nonsaturation samples has a better performance in absolute
accuracy indicators (MAE = 0.40 and RMSE = 0.55 for
10-m inputs) than with saturation samples (MAE = 0.72 and

RMSE = 0.83 for 10-m inputs), and the model trained with
all samples without saturation and nonsaturation separation
achieves the poorest performance (MAE = 0.72 and RMSE
= 1.02 for 10-m inputs). Model trained on saturation samples
exhibits a small correlation coefficient (R = 0.20 for 10-m
inputs), indicating the spectral saturation issue in densely
vegetated condition greatly influence the model performance.
By adding red-edge (RE) and SWIR information of Sentinel-
2 as inputs, the retrieval performance improves for all vege-
tated conditions, which demonstrates the value of RE and/or
SWIR in LAI estimation [37]–[39]. The overall performance
is almost unbiased (Fig. 6), but it should be noted that under-
or over-estimation happens for different LAI conditions. The
LAI result is slightly overestimated in the LAI interval of 1–3,
while it turns to be greatly underestimated when LAI is greater
than 4 (Figs. 5 and 7).

The accuracy results of FPAR retrieval on training and test
data set are shown in Table III, Fig. 5(b) and (d). FPAR
retrieval model trained with saturation samples achieves the
best performance (MAE = 0.03 and RMSE = 0.03 for
10-m inputs) compared with models on nonsaturation samples,
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Fig. 6. Histogram of the difference between estimated LAI/FPAR and original LAI/FPAR. (a) LAI. (b) FPAR.

Fig. 7. Whisker boxplots of LAI/FPAR estimation bias for different LAIs and FPARs. (a) LAI with 10-m inputs. (b) LAI with 20-m inputs. (c) FPAR with
10-m inputs. (d) FPAR with 20-m inputs.

TABLE III

ACCURACY METRICS OF FPAR RETRIEVAL ON TEST DATA SET

which is very different from that of LAI. This is because
the variation of saturated FPAR is much smaller than that of
saturated LAI, and the saturation issue of spectral reflectance

affects greater on LAI than on FPAR. The accuracy of
models on nonsaturation samples and all samples are sim-
ilar, indicating the separation of saturation and nonsatu-
ration samples is not necessary for FPAR retrieval. The
proposed RF model has a better performance on FPAR than
on LAI since the correlation coefficient between estimated
FPAR and its truth value (R = 0.89 for all samples 10-m
inputs on training data set) is higher than that of LAI.
Besides, the extra input information from RE and SWIR
also slightly improves the FPAR estimation performance.
The overall performance is also unbiased for FPAR (Fig. 6),
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Fig. 8. Monthly composite of LAI and FPAR map over Northern China plain in August 2019 from Sentinel-2 20-m inputs. (a) LAI. (b) FPAR.

and slight underestimation is observed for FPAR greater than
0.8 (Figs. 5 and 7).

B. Intercomparing With MODIS Product

In Section IV-A, we evaluated the performance of the mod-
els on high-quality test samples. In this section, the proposed
LAI/FPAR retrieval models are applied on real Sentinel-2
images for a further intercomparing with MODIS product.
Because the saturation indicator on Sentinel-2 pixel is not
available, thus the models trained with all samples are used
afterward. The link of a toy example of the code is provided
in Appendix.

Fig. 8 shows the monthly composite LAI and FPAR map
over Northern China plain in August 2019 derived based on
our method from Sentinel-2 20-m inputs. We then select a
small cropland region near Hengshui City centered at 115.5◦
E, 38.0◦ N in the center of our study area, which covers
∼2000 km2, for Sentinel-2 and MODIS LAI/FPAR detailed
comparison. According to the phenology of wheat and maize
cultivated in this region, the LAI and FPAR derived in
early April (green-recovering stage of wheat) and late August
(grain-filling stage of maize) are chosen as the representative
of sparse-to-moderate vegetated condition and dense vegeta-
tion condition.

Fig. 9(a)–(f) illustrates the comparison of Sentinel-2 and
MODIS LAI maps in April and August of 2019. The spatial
distribution of Sentinel-2 LAI and MODIS LAI is consistent
both in April and in August, but the Sentinel-2 results provide
more spatial details compared with that of MODIS. The
average LAI is about 1.6 and 4.4 over this region for April and
August, respectively. Fig. 9(g) and (h) suggest the quanti-
tative difference between LAI from Sentinel-2 and MODIS.
The Sentinel-2 LAI is aggregated to 500-m resolution using
the arithmetical average method. In the sparse-to-moderate
vegetated condition [early April, Fig. 9(a)–(c)], the retrieval

performance is much better than that in the densely vegetated
condition (late August, Fig. 9(d)–(f)], with MAE of 0.27 and
0.91 for April and August with 10-m inputs, respectively.
Models with 20-m inputs show a higher retrieval accuracy
compared with that of 10-m inputs in densely vegetated con-
ditions. Besides, 10-m inputs model is slightly overestimated
especially in sparse-to-moderate vegetated condition, while
20-m inputs model rectifies the bias.

Fig. 10(a)–(f) shows the comparison of Sentinel-2 and
MODIS FPAR maps in April and August of 2019. Spatial
consistency could still be observed between Sentinel-2 FPAR
and MODIS FPAR, with more spatial details in Sentinel-2
results. The average FPAR is about 0.4 and 0.85 over this
region for April and August, respectively. Fig. 10(g) and (h)
quantifies the difference between FPAR from Sentinel-2 and
MODIS. The retrieval accuracy is similar in the sparse-
to-moderate vegetated condition (early April, Fig. 10(a)–(c)]
and the dense vegetated condition [late August, Fig. 10(d)–(f)].
In sparse-to-moderate vegetated condition, FPAR estimation
is overestimated either for 10-m inputs model or 20-m inputs
model, but the degree of overestimation much declines for
20-m inputs model. In dense vegetated condition, the FPAR
retrieval accuracies are similar for two group of inputs.

Note that dual peaks appear in LAI histograms of August,
and it may cause by a two-day delay of Sentinel-2 imaging
date compared with that of MODIS. Besides, the MODIS LAI
saturation issue in densely vegetated condition may be another
source of this discrepancy [29].

Three homogeneous cropland sites located at Hengshui
(115.51◦ E, 37.88◦ N), Luohe (113.11◦ E, 33.69◦ N) and
Xiaotangshan (116.44◦ E, 40.18◦ N) across the study area
are selected to check the temporal variation of the Sentinel-2
LAI/FPAR results. Fig. 11 shows the temporal LAI/FPAR
trajectories over these three sites for the entire year of 2019.
For a better comparison, Sentinel-2 results are aggregated to
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Fig. 9. LAI maps and histograms of LAI difference of a small cropland region near Hengshui City derived from Sentinel-2 and MODIS on early April and
late August of 2019. Histograms of the difference are calculated between Sentinel-2 LAI and MODIS LAI for early April and late August. (a) 10-m LAI from
Sentinel-2 in April. (b) 20-m LAI from Sentinel-2 in April. (c) 500-m LAI from MODIS in April. (d) 10-m LAI from Sentinel-2 in August. (e) 20-m LAI
from Sentinel-2 in August. (f) 500-m LAI from MODIS in August. (g) Histograms of LAI difference in April. (h) Histograms of LAI difference in August.

500 m to match the MODIS resolution. The bimodal pattern
of LAI and FPAR seasonality over these sites is caused by
rotation agricultural management of wheat and maize during a
year, and the peak of wheat growing appears in April to May
and maize in August to September, depending on the site’s
latitude. The Sentinel-2 and MODIS LAI/FPAR are in good
agreement in the entire year for all these three sites, while few

mismatches only happen in the extreme high or low vegetation
condition.

C. Ground Validation

Ground LAI observations are used to directly validate
the accuracy of the Sentinel-2 LAI retrieval result. The
LAI in situ observations is collected near Hengshui and
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Fig. 10. FPAR maps and histograms of FPAR difference of a small cropland region near Hengshui City derived from Sentinel-2 and MODIS on early
April and late August of 2019. Histograms of the difference are calculated between Sentinel-2 FPAR and MODIS FPAR for early April and late August.
(a) 10-m FPAR from Sentinel-2 in April. (b) 20-m FPAR from Sentinel-2 in April. (c) 500-m FPAR from MODIS in April. (d) 10-m FPAR from Sentinel-2 in
August. (e) 20-m FPAR from Sentinel-2 in August. (f) 500-m FPAR from MODIS in August. (g) Histograms of FPAR difference in April. (h) Histograms of
FPAR difference in August.

Luohe experimental sites mentioned in Section IV-B dur-
ing the wheat growing seasons of 2017 and 2018. The
LAI was measured using an LAI-2000 Plant Canopy
Analyzer (Li-Cor Inc., Lincoln, NE, USA) in a homoge-
neous cropland elementary sampling unit (ESU) of 10 m
× 10 m, and a total of 40 LAI measurements were
collected.

Fig. 12 shows the ground validation result of Sentinel-2 LAI
maps. A good agreement between the ground-measured LAI
and retrieved LAI from Sentinel-2 data are observed for 10-
and 20-m inputs models, but the 20-m LAI values are in
slight better agreement with the ground measurements (MAE
= 0.62 and RMSE = 0.72) than the 10-m LAI values (MAE
= 0.73 and RMSE = 0.83).
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Fig. 11. Yearly variation in 2019 of LAI/FPAR time series from Sentinel-2 and MODIS over Hengshui, Luohe and Xiaotangshan cropland sites. (a) Hengshui
LAI. (b) Hengshui FPAR. (c) Luohe LAI. (d) Luohe FPAR. (e) Xiaotangshan LAI. (f) Xiaotangshan FPAR.

V. DISCUSSION

Timely retrieving high spatial and temporal resolution vege-
tation variables of crop from optical remotely sensed data is of
great importance for agricultural management [2], and it is still
a challenging task due to the issues in data acquisition, model
accuracy, and massive computational time-consuming. This

article proposed a decameter cropland LAI/FPAR retrieval
framework from Sentinel-2 surface reflectance data on the
GEE platform for Northern China plain, and the performance
of the methods is generally acceptable based on the inter-
comparisons and ground validations. Nevertheless, the method
could still be improved in accuracy and practicability.
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Fig. 12. Comparison of Sentinel-2 derived LAI with ground-measured LAI.

Spectral saturation happens in densely vegetated condi-
tion greatly affects the retrieval accuracy especially for
LAI [6], [40], [41]. The introduction of RE and SWIR infor-
mation of Sentinel-2 slightly improved the model performance,
and it is consistent with the conclusion of many related litera-
ture studies [37]–[39]. The retrieval accuracy has remarkably
improved when the saturation and nonsaturation samples are
separated in model training process, which indicates that the
pixel saturation flag is an influential factor for LAI/FPAR
retrieval. Thus, it is expectable to improve the overall estima-
tion accuracy if the pixel saturation flag could be obtained,
e.g., by using an advanced machine learning algorithm in
high-dimensional spectral space.

The residual cloud and aerosol contamination after
atmospheric correction is another source of uncertainty of the
LAI/FPAR retrieval results [42]. Even though the samples used
for training are strictly filtered by cloud mask and 1.5 IQR
criteria mentioned in Section III-C, some bad-quality samples
still exist, which undermines the model performance. On the
other hand, even if the retrieval model is built on hundred
percent high-quality samples, the realistic pixel to be estimated
is somewhat influenced by aerosol effect, which could not
be completely removed by atmospheric correction, and those
pixels with high aerosol optical depth (AOD) will obviously
result in retrieval failure based on our algorithm built in small
or no aerosol condition.

Other factors, such as the uncertainty of the MODIS
LAI/FPAR product and landcover product, also affect the
retrieval accuracy and model performance [43], [44]. The
cropland mask data set from FROM-GLC adopted in this
study was generated in 2017, and we have assumed that the
land cover and land use did not change during the period
of 2017–2020. However, the land cover cropland distrib-
ution is dynamic from year to year; therefore, an annual
dynamic land cover product is necessary for a more accurate
application.

Although the RF model is robust and efficient enough
to deal with this high dimensional parameters’ retrieval
task, more advanced machine learning algorithms, such as
deep learning methods, may further exploit the spectral
and spatial/temporal information and achieve better perfor-
mance [45]–[47]. Moreover, standardized ten-day or monthly
composite high-resolution cropland LAI/FPAR product with
no gap may be more useful and essential for continues
operational agricultural monitoring applications; hence, image
composition and missing data recovery technics will be
adopted to obtain standardized product in the forthcoming
investigation [48]–[50]. Besides, a harmonized Sentinel-2 and
Landsat data set can further improve the temporal resolution
of decameter cropland LAI/FPAR product [51].

VI. CONCLUSION

A method of retrieving decameter cropland LAI/FPAR from
Sentinel-2 surface reflectance data using the RF model on
the GEE platform over Northern China plain is developed
in this study, which is beneficial for monitoring crop growth
and large-scale drought. The RF model is first trained using
the spatial aggregated Sentinel-2 surface reflectance on homo-
geneous cropland and the corresponding MODIS LAI/FPAR
product. There are two groups of band reflectance inputs,
one is 10-m inputs, which include the surface reflectance of
Sentinel-2 10-m resolution bands, that is green, red, and NIR
and sun-senor geometry (called 10-m inputs), and the other is
Sentinel-2 20-m resolution bands together with 10-m band,
which adds RE1, RE2, RE3, SWIR1, and SWIR2 (called
20-m inputs). The outputs of the RF model are LAI and
FPAR. The results demonstrated that both 10-m inputs RF
model and 20-m inputs RF model can estimate LAI/FPAR
appropriately, and the model theoretical performance showed
that 20-m inputs RF model had better accuracy for both
LAI and FPAR retrieval. The new method was used to
retrieve LAI/FPAR from Sentinel-2 image, and the retrieved
LAI/FPAR was then compared with the MODIS LAI/FPAR
product, getting consistent distribution with MODIS spatially
and temporally. The histogram of Sentinel-2 20-m LAI/FPAR
agreed somewhat better with the MODIS than Sentinel-2 10-m
LAI/FPAR especially in sparse-to-moderate vegetated condi-
tion, while the latter showed a slight overestimation. Direct
validation with ground LAI measurements also indicated that
the accuracy of the Sentinel-2 20-m result was better than
that of 10-m result. Spectral saturation, aerosol and cloud
contamination, and uncertainty of MODIS LAI/FPAR and
land cover products could be the sources of uncertainty in
decameter LAI/FPAR result; thus, it should be addressed in
the further work. Moreover, the new retrieval method can also
be applied to other high-resolution sensors such as Landsat
OLI or ETM+, and further considerations of the retrieval of
LAI/FPAR from harmonized Sentinel-2 and Landsat data will
be explored in a forthcoming study.

APPENDIX

An example of the code is available at https://code.
earthengine.google.com/6f84a4a76edd6952392784cff5ced93a.
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