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Red-Edge Band Vegetation Indices for Leaf Area
Index Estimation From Sentinel-2/MSI Imagery

Yuanheng Sun , Qiming Qin, Huazhong Ren , Tianyuan Zhang, and Shanshan Chen

Abstract— The estimation of leaf area index (LAI) from optical
remotely sensed data based on vegetation indices (VIs) is a
quick and practical approach to acquire LAI over vast areas.
Reflectance in the red-edge bands is sensitive to vegetation
status, and its information is thought to be useful in agricul-
tural applications. Based on three red-edge band observations
(represented as RE1, RE2, and RE3 for bands 5–7) from the
Multispectral Instrument (MSI) onboard the Sentinel-2 satellite,
this article aims to investigate the feasibility and performance
of using red-edge bands for LAI estimates with the VI method
and ground-measured LAI data sets. Sensitivity analysis from
PROSAIL simulations revealed that RE1 is mainly affected by
the influence of the leaf chlorophyll content, and this uncer-
tainty should not be ignored during LAI estimation. For the
normalized difference vegetation index (NDVI), modified simple
ratio (MSR), chlorophyll index (CI), and wide dynamic range
vegetation index (WDRVI), the optimal combination of Sentinel-2
bands for LAI estimation was RE2 and RE3, with a minimum
root-mean-square error (RMSE) of 0.75. Four 3-band red-edge
VIs were proposed to exploit the full content of the red-edge
bands of Sentinel-2, and their performance in LAI estimation
improved slightly. However, both 2-band red-edge VIs and 3-band
red-edge VIs remained slightly saturated at high LAI levels;
therefore, a segmental estimation with a threshold was suggested
for large LAIs. The results indicate that the optimal 2-band
red-edge VIs and proposed 3-band red-edge VIs are effective tools
for crop LAI estimation in multiple-growth stages with Sentinel-2
MSI images.

Index Terms— Leaf area index (LAI), precision agriculture,
red-edge, Sentinel-2, vegetation index.

I. INTRODUCTION

QUANTITATIVE retrieval of vegetation biophysical
characteristics is an essential requirement in ecological

and agricultural applications [1], [2], and one of these impor-
tant variables is leaf area index (LAI), which describes the
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canopy structure of vegetation [3]. LAI is universally defined
as the total one-sided area of photosynthetic tissue per unit
ground area [4], [5], or half the total intercepting area per unit
ground surface for nonflat leaves [6]. Based on the parts of
vegetation that are accounted for, LAI can be divided into the
plant area index (PAI) representing the green area, including
the stem and wilted leaf and the purely green leaf area [7].
The green LAI or PAI is of great interest for agronomists and
physiologists. In addition, different distributions of leaf foliage
within a canopy can lead to different photosynthetic capacities,
and the clumping index is used as an indicator to quantify the
level of foliage grouping within distinct canopy structures [6].
Based on this concept, the true LAI multiplied by the clumping
index is referred to as the effective LAI [8], [9]. To date,
remote sensing has been the only feasible way to acquire
LAI over a vast area, especially on the global scale [10].
In recent years, remote sensing-derived LAI has been exten-
sively applied in crop growth monitoring [11], [12], agronomic
management [13], [14], and yield estimation [15], [16] in
agroecosystems. The knowledge of the spatial distribution of
LAI allows farmers to be more precise in terms of fertilization
and within-field water management [17].

The LAI retrieval methods from optical remote sensing
data can be classified into three main categories: empirical,
physically-based, and data-driven methods. Empirical models
involve linear or nonlinear relationships between LAI and
spectral reflectance or vegetation indices (VIs). This method
is easy to implement, but it requires different calibrations with
field measurements for particular vegetation types or areas
[18], [19]. The physical-based method uses a radiative transfer
model to simulate the motion of photons within the canopies
and typically uses a look-up-table (LUT) strategy for retrieval
[3], [7]. Compared to empirical methods, physically-based
models are more accurate and applicable for a wider range
of situations [20], but these models require more ancillary
information per vegetation type for model parameterization,
which is not always available. Data-driven models are a hybrid
method that balance the advantages and weaknesses of the
empirical and physically-based models and are constructed
from massive simulated or in situ observation data sets using a
machine learning approach [21]–[23]. However, the qualified
data set for model training is not easy to obtain, and the
training process may be fairly time-consuming.

The simple and computationally efficient empirical method
remains of great interest for remote sensing LAI estimation.
VIs are still the most extensive and effective variables for
LAI estimation because they are dimensionless indicators
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that can be used to depict the density or growth status of
vegetation by using the contrast of spectral reflectance in
different wavelengths, especially in the red and near-infrared
(NIR) ranges. Among these indices, the normalized difference
vegetation index (NDVI) is regarded as the most popular
vegetation index for estimating vegetation biophysical char-
acteristics [24]. However, the NDVI suffers from saturation at
high LAI values, which is a limitation for its application in LAI
retrieval [25]–[27]. To address this issue, Chen [28] evaluated
several two-band VIs and proposed a modified simple ratio
(MSR) index for LAI estimation in boreal forests. For crop
LAI estimation, Gitelson [29] introduced a weighting coeffi-
cient to modify NDVI and consequently proposed the wide
dynamic range vegetation index (WDRVI), whose sensitivity
toward the moderate-to-high LAI values was claimed to be
three times greater than that of the NDVI.

Apart from the conventional red and NIR bands, the poten-
tial of using the red-edge spectral information for LAI retrieval
has also been demonstrated [30]–[32]. The red-edge of a
vegetated spectrum is defined as the sharp change in the
reflectance curve between 680 and 750 nm [33], and the shape
of the red-edge region is strongly influenced by LAI because
the canopy reflectance in the red-edge region mainly results
from the multiple scattering between leaf layers [34], [35].
Meanwhile, there has been rapid technological progress over
the last two decades in the development of moderate-to-high
spatial resolution imaging sensors involving red-edge bands,
including hyperspectral spectrometers such as Hyperion [30]
and CHRIS [36], and multispectral sensors such as Rapid-
Eye [37] and WorldView-2 [38].

As an important component of the Copernicus program,
Sentinel-2 satellites from the European Space Agency (ESA)
provide imagery with three red-edge bands [39]. By exploiting
the spectral information of red-edge bands from the Sentinel-2
configuration, some studies have demonstrated that the added
red-edge spectral information can improve the accuracy of LAI
[40], [41], chlorophyll content [42], [43] and biomass [44] esti-
mations, while some other studies believed that the improve-
ment in variable retrieval accuracy by using red-edge spectral
information was not significant [45], [46].

Chlorophyll a and b content (hereafter called “chlorophyll
content”) also has a great impact on the red-edge reflectance,
and its increase can cause a shift in the red-edge posi-
tion toward longer wavelengths [40], [47]. Thus, some red-
edge VIs are also proposed to estimate the chlorophyll con-
tent [48], [49]. During the crop growth period, the canopy
reflectance in red-edge and other bands varies simultaneously
with the chlorophyll content and LAI changes, which makes
the influence of the chlorophyll content nonnegligible for LAI
estimation if the red-edge spectral indices are used. To address
this issue, many studies have been carried out to explore
the influence of red-edge spectral reflectance on LAI and
chlorophyll content when red-edge spectral indices are used
for parameter estimation based on the band configurations
of some long-existing sensors, such as RapidEye [31], [50]
and WorldView-2 [51]. Several recent works have focused
on the individual influence of LAI and chlorophyll content
on the reflectance of Sentinel-2 red-edge bands [43], [52];

Fig. 1. Locations of the LN, HB, and HN experimental sites. The background
images are the true color composite from Sentinel-2 collected on the dates
corresponding to the fieldwork. Image coordinates (Northing and Easting) are
in UTM Zone 50N projection based on a WGS-84 datum and spheroid.

however, the mutual influence of LAI and chlorophyll content
on LAI has not been fully discussed. In addition, few studies
have been conducted to determine whether using red-edge
bands can improve the accuracy of LAI estimation with real
Sentinel-2 imagery and in situ LAI observations; therefore,
there remains some uncertainty of its usefulness.

This article tries to clarify the above issues with the fol-
lowing three research objectives: 1) analyze the individual and
mutual influence of LAI and chlorophyll content on Sentinel-2
red-edge bands to find the optimal band for the LAI estimation;
2) check the performance of several classic VIs in LAI
retrieval before and after using red-edge information based
on Sentinel-2 imagery and in situ LAI measurements; and
3) evaluate several 3-band red-edge VIs that were proposed
in this article for LAI retrieval.

II. GROUND-MEASURED LAI DATA AND

SENTINEL-2 IMAGERY

A. Experimental Sites and In Situ LAI Collections

The field campaigns for LAI collection took place at three
experimental sites located in Henan (HN), Hebei (HB), and
Liaoning (LN) provinces, China (Fig. 1). The HN experimental
site centered at 33.5◦ N, 114.1◦ E has a warm temperate
monsoon (wet summer and dry winter) climate with a yearly
average temperature of 14.6 ◦C and average precipitation
of 805 mm. Winter wheat (Triticum aestivum L.) and maize
(Zea mays L.) are the main crops in this region and are under
rotation irrigated management practices. Wheat is sowed in
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TABLE I

DATES OF FIELD MEASUREMENTS AND THE
CORRESPONDING SENTINEL-2 IMAGES

early October and harvested in late May of the next year,
while maize is cultivated from June to September. The HB
experimental site has similar climate characteristics to that
of HN, with central geographical coordinates of 37.5 N
and 115.6 E. The annual average temperature of the HB site is
approximately 12.7 ◦C, and average precipitation is approxi-
mately 510 mm. Wheat and maize are the dominant crops. The
location of the LN experimental site is approximately 41.9 N,
119.4 E. The cultivated crop at the LN site is continuously
irrigated maize. The crop is sowed in early May and harvested
in October due to a relatively cold and more arid temperate
monsoon climate with an annual temperature being 6.8 ◦C and
precipitation of 480 mm.

LAI field measurements were carried out in these experi-
mental sites from spring 2017 to summer 2018, covering the
onset and peak of the crop growth cycle to maximize the
dynamic range of the LAI data from different phenological
states. Table I lists the dates of the measurements. At the HN
experimental site, the LAI of winter wheat was measured on
March 8, 2018 and April 6, 2018, from its tilling stage to the
jointing stage. At the HB experimental site, the LAI of winter
wheat was measured on March 29, 2017 and May 4, 2017,
from its tilling stage to heading stage. At this site, the maize
LAI was measured on July 5, 2017 and July 29, 2017, from
its tilling stage to jointing stage. At the LN experimental site,
the maize LAI was measured on June 10, 2018, under the
tilling stage.

The above ground-based LAI was measured using an
LAI-2000 Plant Canopy Analyzer (Li-Cor Inc., Lincoln,
NE, USA). Since the crops are still in their vegetative stage
and all the green parts of crops are detected during mea-
surements, the measured total LAI can be understood as
“effective green PAI” according to its definition introduced.
For the HN experimental site, 32 elementary sampling units
(ESUs) were established and evenly distributed across the
homogeneous cropland region. Each ESU covered an area of
approximately 5 m × 5 m, and five LAI measurements were
collected; their average LAI was used to represent the final
LAI value of the ESU. The same procedure was followed

TABLE II

SENTINEL-2 MSI BAND INFORMATION IN VNIR RANGE

Fig. 2. Filters of three red-edge bands (RE1, RE2, and RE3) of Sentinel-2
with a typical conifer reflectance spectrum (source: USGS spectrum library).

for the HB and LN sites. The numbers of ESUs at the HB
site and LN site were 55 and 24, respectively. All ESUs at
the HB site were clustered into five LAI measurements in
a homogeneous 100 m × 100 m area. The site layout is
designed for future validation on LAI products at a much
coarser spatial resolution. Nevertheless, a 5 m × 5 m ESU
is our prime focus in this study. The distribution of the ESUs
for in situ LAI observation is partly presented in Fig. 1 with
their corresponding true color composite Sentinel-2 imagery
as the background.

B. Sentinel-2/MSI Imageries Acquisition and Processing

The payload on the Sentinel-2 satellites, the Multispectral
Instrument (MSI), comprises 13 bands including visible and
near-infrared (VNIR, as shown in Table II) and shortwave
infrared (SWIR) bands. Compared to other frequently-used
multispectral sensors, such as Landsat-TM/ETM+/OLI and
SPOT-HRV/HRG, Sentinel-2 has three additional red-edge
bands located at 705, 740, and 783 nm (Fig. 2) in the VNIR
domain with a spatial resolution of 20 m and a five-day revisit
period when Sentinel-2A and Sentinel-2B data are combined
under cloudless circumstances. It should be noted that RE3 of
Sentinel-2 (band 7 centered at 783 nm) is out of the range
where a sharp increase in reflectance occurs and quite close
to the NIR domain (Fig. 2), so it is an NIR band more
precisely. Since ESA has named it “red-edge band 3,” we
still call it as RE3 in this article. The Sentinel-2 images
used in this article are listed in Table I, and their dates are
concurrent with those of the field campaign. These images
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were downloaded from the Sentinels Scientific Data Hub
(http://scihub.copernicus.eu/) as Level-1C orthorectified top
of atmosphere (TOA) reflectance and then atmospherically
corrected to obtain the top of canopy (TOC) reflectance using
the Sen2Cor atmosphere correction toolbox (version 2.5.5)
built in the Sentinel Application Platform (SNAP) software
(version 6.0.0), which converted the TOA reflectance into the
TOC reflectance [53]. The spatial resolutions of all bands were
set to 20 m to guarantee the combined use of blue, red NIR,
and red-edge bands.

III. NEW VEGETATION INDEXBASED METHOD

FOR LAI ESTIMATION

To determine the influence of LAI and chlorophyll content
on the band reflectance of Sentinel-2, simulated spectra under
different LAIs and chlorophyll contents were first generated.
Afterward, a sensitivity analysis was implemented to identify
the significance of LAI and chlorophyll content to explain the
variance in the Sentinel-2 band reflectance to develop a theo-
retical basis for optimal band selection for different VI forms.
Next, the existing and improved VIs were introduced, and
finally, we determined the optimal band combination and
validated classic and newly proposed red-edge VIs against
ground measurements.

A. Simulated Canopy Reflectance With PROSAIL Model

The canopy spectra were simulated using the PROSAIL
model to check and analyze the influence of LAI and chloro-
phyll content (Cab) on the Sentinel-2 broad-band spectral
reflectance, especially when they vary at the same time. The
PROSAIL model, which couples the PROSPECT leaf optical
properties model [54], [55] and Scattering by Arbitrarily
Inclined Leaves (SAIL) canopy bidirectional reflectance model
[56], [57], is widely used to model canopy spectra [58].
In this model, the canopy spectrum is mainly characterized
by LAI, average leaf angle (ALA), leaf spectral reflectance
and transmittance, which are a function of Cab, dry matter
content (Cm), water content (Cw), leaf mesophyll structure
index (N), and some other less influential factors.

As shown in Table III, the simulation sets LAI values from
1.0 to 8.0 with a step of 1.0 and chlorophyll content from
10 to 80 μg/cm2 with a step of 5 μg/cm2. The grayish-brown
loam that is widespread in northern China was selected as
the background soil for the PROSAIL model, and its spec-
trum was obtained from the Johns Hopkins University (JHU)
spectra database [59]. Other parameters of the PROSAIL
model were assigned a fixed value based on our field mea-
surements and related literature [60] for wheat and maize,
as listed in Table III. Finally, the simulated canopy spectral
reflectance was integrated into the band reflectance using the
Sentinel-2/MSI spectral filters.

B. Sensitivity Analysis Methods for Sentinel-2 Red-Edge
Bands

Both local and global sensitivity analyses were implemented
to quantify the significance of LAI and chlorophyll content

TABLE III

NOMINAL VALUES OR RANGES OF PARAMETERS
USED IN THE PROSAIL MODEL

in explaining the variance in the canopy reflectance. The
reflectance of the three red-edge Sentinel-2 bands (B5, cen-
tered at 705 nm, represented as RE1; B6, centered at 740 nm,
represented as RE2; and B7, centered at 783 nm, represented
as RE3), together with red (B4, centered at 665 nm) and
NIR bands (B8, centered at 842 nm), were investigated to
determine whether and to what extent the variation in LAI
and chlorophyll content impacted them.

For the local sensitivity analysis, LAI was fixed at different
levels, and �Ref was calculated as an indicator to quantify
the relative change in band reflectance between two different
chlorophyll contents

�Ref =
∣∣∣∣Ref2 − Ref1

Ref1
×100%

∣∣∣∣ (1)

where Ref1 is the band reflectance of the red, red-edge,
or NIR band of Sentinel-2 under one chlorophyll content,
referred to as the reference reflectance in (1), while Ref2 is the
corresponding reflectance under another chlorophyll content.

The influence of a single parameter on the outcome is rarely
completely independent. Coupling interactions usually exist
between various parameters but are not taken into account
in local sensitivity analysis methods [61] Thus, the extended
Fourier amplitude sensitivity test (EFAST) approach which is
capable of describing the coupling interactions was adopted in
this study. This variance-based method performs a judicious
deterministic sampling to explore the parameter space, allow-
ing for the reduction of these integrals to 1-D integrals using
Fourier decompositions [62], [63]. It allows the estimation of
firstorder (individual) and total (joint) Sobol indices for all the
factors contributing to the canopy spectrum in the PROSAIL
model with high computational efficiency. In this practice, the
calculation by EFAST is limited to sensitivities referring to
the main effect (additive influence of individual input factor)
and total effect (an overall measurement of the contribution
of a factor coupling with others). Taking a particular factor
LAI for instance, its main effect gives the influence of LAI
independently, while the total effect is the joint contribution
of LAI with other factors. In other words, the difference
between the main effect and the total effect of LAI is the
effect of its interaction with others. On the basis of the above
PROSAIL simulated data set this article conducted a global
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TABLE IV

POTENTIAL VIs FOR SENTINEL-2 LAI ESTIMATION

analysis with the EFAST method with the Sensitivity Package
(version 1.15.2) on the R platform (version 3.5.1).

C. Existing and Improved Vegetation Indices

VIs were derived from the surface reflectance of Sentinel-2
imageries for subsequent LAI retrieval. Some of the potential
VIs used for Sentinel-2 LAI estimation are listed in Table IV.
NDVI is an effective and widely used VI benchmark with
an inherent drawback of saturation under moderate-to-dense
canopies. VIs such as MSR and WDRVI are also based on
red and NIR band reflectance. Chlorophyll-related VIs such
as the red-edge chlorophyll index (CI) also exhibit a linear
relationship with LAI [64], which can reduce the abovemen-
tioned saturation issue of NDVI to a certain extent. As such,
the red-edge located in the wavelength range from red to NIR
with rapid reflectance increases has the potential to replace
red or even NIR reflectance in the NDVI, MSR, WDRVI
and red-edge CI for constructing novel indices to suppress
the saturation problem in the current VIs [65], [66] Original
red-edge CI will be referred to as CI for short afterward.

Different band combinations among red, red-edge and NIR
of Sentinel-2 were tested for NDVI, MSR, CI and WDRVI
(Table IV) to determine the optimal combination for LAI esti-
mation. The introduction of red-edge bands in VIs can improve
the performance in LAI estimation [48], [49], [65], but the
VIs mentioned above only use one red-edge band. To make
full use of the red-edge band information, we combine three
red-edge bands for Sentinel-2 LAI retrieval. As a result four
new VIs that exploit the spectral information of all three red-
edge bands were proposed: 3-band red-edge NDVI (3NDVIre),
3-band red-edge MSR (3MSRre), 3-band red-edge CI (3CIre)
and 3-band red-edge WDRVI (3WDRVIre). The four VIs are
calculated as the weighted average of two conventional 2-band
VIs with different red-edge bands as shown in (2)–(5). The
subscripts re1, re2 and re3 corresponded to the three red-edge
bands (RE1, RE2 and RE3 in Table II)

3NDVIre = a
Rre3 − Rre1

Rre3 + Rre1
+ (1 − a)

Rre3 − Rre2

Rre3 + Rre2
(2)

3MSRre = a
(Rre3/Rre1) − 1√
(Rre3/Rre1) + 1

+(1 − a)
(Rre3/Rre2) − 1√
(Rre3/Rre2) + 1

(3)

3CIre = a

(
Rre3

Rre1
− 1

)
+ (1 − a)

(
Rre3

Rre2
− 1

)
(4)

3WDRVIre = a

(
c ∗ Rre3 − Rre1

c ∗ Rre3 + Rre1
+ 1 − c

1 + c

)

+ (1 − a)

(
c ∗ Rre3 − Rre2

c ∗ Rre3 + Rre2
+ 1 − c

1 + c

)
. (5)

The use of red-edge spectral information could eliminate
the saturation problem but it could also lead to sensitivity to
chlorophyll content. Thus the weighted coefficient “a” in the
equations is designed to balance the decrease in the degree of
saturation and the influence of the chlorophyll content. This
coefficient is band-dependent and is determined by in situ
LAI observations and the corresponding VIs derived from
Sentinel-2 in Section III-D

D. Comparison and Validation Methods for Different
Vegetation Indices

The performance of the VIs discussed in Section III-C in
LAI estimation was evaluated with a k-fold cross-validation
procedure by using in situ observations and their correspond-
ing Sentinel-2 data [68]. The entire LAI data set obtained from
the LN, HB, and HN experimental sites was randomly divided
into k mutually exclusive equal-size groups. In the k groups,
k− 1 groups were selected as the training data set, while the
rest were used as the validation data set. This process was
repeated k times to ensure that each group could be used
as validation and the rest were used as the training data set.
This kind of validation method avoids the dependence on a
single random partition into validation data sets and guarantees
that all samples are used for both training and validation
with the same probability. In this case, we used a tenfold
(k = 10) cross-validation procedure. Finally, the coefficient of
determination (R2) of the VIs and the corresponding measured
LAI and the root-mean-square error (RMSE) of the estimated
LAI and measured LAI were selected as the indicators to
evaluate the performance of these VIs.

IV. RESULTS

A. Spectral Characteristics of Sentinel-2 Red-Edge Bands

Fig. 3 demonstrates the variation of the relative difference
in reflectance with chlorophyll contents of 20 and 70 μg/cm2

under different LAI values. The red, RE1, RE2, and RE3,
and NIR correspond to the Sentinel-2 MSI bands 4–8 con-
figurations, respectively. RE1 has the largest variation in
the reflectance ratio, and �RE1 increases as LAI increases
and it reaches 35% when LAI = 8, which indicates that
the RE1 band is significantly affected by the chlorophyll
content. The values for �RE2 and �RE3 are lower than
�RE1 but steadily increase as LAI increases. For example,
�RE2 and �RE3 increase by 9.4% and 3.9%, respectively,
as the chlorophyll content varies from 20 to 70 μg/cm2 for
LAI = 3 (median vegetation). However, these values only
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Fig. 3. Relative changes in band reflectance (�Ref) under different LAI
values, with chlorophyll content changing from 20 and 70 μg/cm2.

Fig. 4. Main effect and interaction of sensitivity analysis on LAI and
chlorophyll content on Sentinel-2 band reflectance. The light color represents
the main effect (independent contribution), and the dark color represents the
interaction.

increase to 14.8% and 7.3% for the samples of LAI = 6
(dense vegetation). For the RE3 and NIR bands, their relative
changes in the reflectance at different chlorophyll contents are
nearly 0.0 in all LAI ranges, indicating that the chlorophyll
content has nearly no impact on these two bands.

The sensitivity outcome on chlorophyll content might be
diverse under different LAI values due to interactions between
the effect of chlorophyll content and LAI, and vice versa.
Therefore apart from individual sensitivity analysis of the
chlorophyll content and LAI, the EFAST global sensitivity
analysis method was introduced to reveal the mutual effect
of the LAI, chlorophyll content and other parameters on the
reflectance of Sentinel-2 red-edge bands. Fig. 4 presents the
main effect and interaction of the contribution of LAI and
chlorophyll content on the reflectance. In the red band the
sum of the main effect of LAI and chlorophyll content is 90%
(68.5% for LAI and 21.5% for chlorophyll content), which
means that approximately 90% of the information on the red
band reflectance from the PROSAIL model can be explained
by LAI and chlorophyll content, and the remaining 10% can
be explained by the interactions with other parameters. For the
RE1 band, the chlorophyll content contributes most to the band
reflectance information, with the main effect of 84.4% and an
interaction of 7.1% while the LAI only contributes 8.3%. For

TABLE V

DETERMINATION COEFFICIENT (R2) OF LINEAR REGRESSION FOR

DIFFERENT BAND COMBINATIONS OF SENTINEL-2 VNIR IN
NDVI-LIKE, MSR-LIKE, CI-LIKE, AND WDRVI-LIKE VIs

the RE2 band, the LAI accounts for 92.8% of the information
in the reflectance with fewer interactions, and the chlorophyll
content explains only 5.1%. Finally, almost all the information
in the RE3 and NIR bands comes from the influence of the
LAI which is in agreement with the local sensitivity analysis
results in Fig. 3

The impact of the chlorophyll content on the three red-edge
bands of the Sentinel-2 MSI configuration decreases sharply
toward longer wavelengths with the main effects of 84.4%,
5.1% and nearly 0.0% for RE1, RE2 and RE3 respectively. The
influence of the chlorophyll content on the red band is greater
than that of RE2 and RE3 but much lower than that of RE1
based on the global analysis results. In the local sensitivity
analysis (see Fig. 3), �RE2 is larger than �Red when the
chlorophyll content varies from 20 to 70 μg/cm2 but still
far less than �RE1. Based on these results, it can be con-
cluded that the RE1 of Sentinel-2 is severely affected by the
chlorophyll content, whereas the red and RE2 are moderately
influenced and RE3 and NIR are minimally influenced.

B. Optimal Relationship Between VIs and LAI

Among the three red-edge bands, it is necessary to deter-
mine the optimal red-edge band as well as the vegetation
index for LAI estimation. Table V provides the determination
coefficient (R2) for the linear regression which can reflect
the saturation effect, between in situ LAI observations and
NDVI-like, MSR-like, CI-like and WDRVI-like VIs using
different combinations of Sentinel-2 bands. It was found that
the combination of bands RE2 and RE3 in the four VIs results
in the strongest correlations with LAI. The formulas of these
VIs with optimal bands of Sentinel-2 are shown in (6)–(9).
The combination of RE1 and RE3 is observed as the second
largest R2. Although a strong correlation with LAI is observed,
the RE1 VIs are still not good options due to their sensitivity
to the chlorophyll content as discussed in Section IV-A, and
its value is still needed to be tested. For the NDVI-like indices
saturation also occurs when red and RE1 are used. With the
introduction of RE2 and RE3 to replace red and NIR, such
saturation is reduced to a great extent allowing the R2 to
increase from 0.7072 (row 2 of Table V) to 0.8450 (row 6).
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The other forms of VIs have an acceptable performance
with the conventional red and NIR in the calculation, and
the replacement of red-edge bands only slightly improves
their correlation with ground-measured LAI. Green CI was
calculated as the ratio of NIR and green when it was initially
proposed; thus, it works better with green than red but slightly
worse than RE1 or RE2

NDVIre = Rre3 − Rre2

Rre3 + Rre2
(6)

MSRre = (Rre3/Rre2) − 1√
(Rre3/Rre2) + 1

(7)

CIre = Rre3

Rre2
− 1 (8)

WDRVIre = c ∗ Rre3 − Rre2

c ∗ Rre3 + Rre2
+ 1 − c

1 + c
. (9)

The scatterplots of in situ LAI and VIs based on red and NIR
are presented in the left column of Fig. 5. For CI, the RE1 is
used in its calculation. The NDVI exhibits an exponential
relationship with LAI but is saturated after LAI exceeds 3.
The MSR and WDRVI overcome the saturation problem to a
certain extent, as does the CI when using the band RE1. The
use of RE2 and RE3 increases the correlation between LAI
and VIs (Fig. 5 right column). The employment of the red-edge
band can improve the performance of NDVI when there is sat-
uration [see Fig. 5(b)] and slightly enhances the performance
of the other three VIs. However, the use of red-edge bands
cannot completely remove the saturation effect and saturation
could be still observed for large LAIs (e.g., LAI > 4) for all
these indices. The uncertainty of ground measured LAI data in
the dense vegetated condition is higher than that of the sparse-
to-moderate vegetation. Therefore more reliable in situ LAI
data are needed to explore the performance of these indices,
and the saturation problem remains an issue that needs to be
improved further.

The 3-band red-edge VIs in (2)–(5) were calculated using
the Sentinel-2 reflectance data with the parameter “a” varying
from 0.0 to 1.0 with a step of 0.1. The parameter “a”
represents the proportion of the VIs using RE3 and RE1, and
the parameter “(1 −a)” represents the proportion of the VIs
using RE3 and RE2. The determination coefficients (R2) of
different 3-band red-edge VIs and LAI in the linear regression
model under a series of “a” values are shown in Fig. 6.
All these indices perform similarly at a = 0 (meaning only
RE3 and RE2 are used), but their performance diverges with
the added information of RE1. The curve of the 3-band red-
edge vegetation index based on NDVI (3NDVIre) follows a
monotone decreasing pattern, with the greatest R2 at a = 0,
and its R2 is far smaller than that of the other three indices as
aapproaches 1. The R2 of 3MSRre, 3CIre and 3WDRVIre
peak at a = 0.1 and their curves show the same trend:
a slight increase from a = 0.0 to a = 0.1, and then a
decrease until a = 1.0. The 3CIre has the best performance
compared to 3MSRre and 3WDRVIre while the remaining
two indices perform very similar. All the 3-band red-edge
VIs proposed obtained a higher R2 when a = 0.0 compared
to when a = 1.0, suggesting that using RE2 information
results in a better performance in LAI estimation as opposed to

Fig. 5. Relationships between ground-measured LAI and VIs (NDVI,
NDVIre, MSR, MSRre, CI, CIre, WDRVI, and WDRVIre) derived from
Sentinel-2 imageries of the experimental sites. (a) LAI and NDVI. (b) LAI
and NDVIre. (c) LAI and MSR. (d) LAI and MSRre. (e) LAI and CI. (f) LAI
and CIre. (g) LAI and WDRVI. (h) LAI and WDRVIre.

using RE1 information. Therefore, combining the information
of the three red-edge band reflectance of Sentinel-2 with an
appropriate proportion (i.e. a = 0.1 in our case) will further
improve the correlation between LAI and the VIs. However,
given the variation in crop types and the other factors of the
agricultural system a should be updated in accordance with
more factors before being applied in a new region.

C. Validation for VI Based LAI Estimation Models

The results of the tenfold cross-validation for LAI estima-
tion on different VIs are presented in Figs. 7–9, and the best-fit
regression algorithms of each vegetation index for the ground-
measured LAI of wheat and maize are presented in Table VI.
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Fig. 6. Determination coefficients (R2) of the linear regression from 3-band
red-edge VIs to LAI under different values of the parameter a.

Fig. 7. Ground-measured LAI and estimated LAI from (a) NDVI-, (b) MSR-,
(c) CI-, and (d) WDRVI-based methods.

The R2 and RMSE were selected as the indicators to evaluate
their performance. The NDVI-based model performs the worst
[Fig. 7(a)], and a significant underestimation is observed at
large LAIs, illustrating that VIs are not a good option. The
WDRVI [Fig. 7(d)] still has a problem of saturation and
results in an estimation similar to that of the NDVI. The
other two VIs, MSR and CI [Fig. 7(b) and (c)], show better
LAI estimation power, and the RMSE of the LAI estimated
using these two indices decreases to 0.83 and 0.80. With the
optimal band combination of RE2 and RE3, the performance
of the NDVIre-based model [Fig. 8(a)] improves the LAI
estimate accuracy significantly compared to the conventional
NDVI-based model, with RMSE decreasing from 0.89 to 0.75.
Meanwhile, the improvements in MSRre, CIre, and WDRVIre
are not as prominent compared to the improvement in NDVIre,
as shown in Fig. 8(b)–(d). However, the most prominent

Fig. 8. Ground-measured LAI and estimated LAI from (a) NDVIre-, (b)
MSRre-, (c) CIre-, and (d) WDRVIre-based methods.

Fig. 9. Ground-measured LAI and estimated LAI from (a) 3MSRre-,
(b) 3CIre-, and (c) 3WDRVIre-based methods.

contribution of the red-edge VIs in LAI estimation is their sup-
pression of the overestimation of LAI in moderate-vegetated
conditions both for wheat and maize. The scatterplots of
moderate LAI estimation results (2 < LAI < 5) are mainly
above the 1:1 lines (Fig. 8), while the scatterplots for the
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TABLE VI

BEST-FIT UNIFIED ALGORITHMS FOR THE WHEAT AND MAIZE DATA SETS BASED ON THE ORIGINAL VIs,
2-BAND RED-EDGE VIs, AND PROPOSED 3-BAND RED-EDGE VIs FOR LAI ESTIMATION

NDVIre, MSRre, CIre, and WDRVIre are closer to 1:1 lines
(Fig. 8).

The results of the proposed 3-band red-edge VIs [3MSRre,
3CIre, and 3WDRVIre, in (3)–(5)] with an optimal “a” value
(0.1 in our case) are presented in Fig. 9. Since the optimal a
value of 3NDVIre is 0.0 (see Fig. 6), its result is equivalent
to that of NDVIre in Fig. 8(a) and thus not included here.
Compared to the 2-band red-edge VIs, the 3-band models
achieve similar performance in sparsely-vegetated conditions
(i.e., LAI < 2) and in moderate-to-dense-vegetated conditions
(i.e., 2 < LAI < 5). The overall RMSEs of the 3MSRre,
3CIre, and 3WDRVIre-based methods are 0.720, 0.725, and
0.723, respectively, which are slightly lower than the 2-band
red-edge vegetation index-based methods.

The above ground validation shows that the inclusion of red-
edge bands in VIs is generally reasonable. The results provide
evidence from satellite reflectance and ground-measured data
that the use of RE2 and RE3 can improve the LAI estimate
mainly because the two bands are less influenced by the
chlorophyll content than the red and RE1 bands. These 3-band
red-edge VIs (3MSRre, 3CIre and 3WDRVIre) achieve the
highest LAI estimation accuracy and thus are recommended
for LAI estimation. However, if there is a lack of prior
knowledge on the update of parameter “a” in these VIs before
being applied in a new region, the optimal 2-band red-edge VIs
(NDVIre, MSRre, CIre and WDRVIre) should be considered
first for their robustness. The original VIs (NDVI, MSR,
CI and WDRVI) are suitable for sparse-to-moderatevegetated
conditions if the LAI mapping requires high spatial resolution
(e.g., 10 m).

D. LAI Image Retrieval Using Red-Edge Vegetation
IndexBased Method

The wheat-cultivated region near the HB experimental site is
chosen to illustrate the LAI image estimated from red-edge VIs
during the growing season of 2017. The dates of the presented
LAI images, March 29 and April 28, correspond to moderate
and dense crop conditions, respectively.

The LAI images of nonvegetated areas extracted on
March 29 are presented in Figs. 10 and 11, and the LAI
results derived from the original VIs are also illustrated for

comparison. The NDVI-based method results in more pixels
in the LAI value subrange [0, 1], while more pixels are in
the LAI value subrange [2, 4] for the NDVIre-based result
[Fig. 10(c)]. Pixels with high LAI values can be observed
in the bottom-right corner of the NDVI-based LAI image
[Fig. 10(a)], which is not reasonable during the winter wheat
growth period. This unreasonable result is also manifested in
the histograms in Fig. 10(c). Thus, the NDVI-based result may
not be reliable in this specific region and period. Except for
the NDVI- and NDVIre-based methods, the families of MSR
(MSR, MSRre, and 3MSRre) are also chosen to generate LAI
images with their best-fit regression method (see Table VI).
All of them are shown to have achieved similar LAI images
and LAI histograms, and the two results involving red-edge
bands (MSRre-based and 3MSRre-based) are slightly higher
than the MSR-based LAI result (Fig. 11).

The LAI images with nonvegetated areas extracted on
April 28 are presented in Figs. 12 and 13. Few pixels exhibit
an LAI value higher than 5.5 when using the NDVI-based
approach, clearly demonstrating its saturation problem in LAI
estimation under densely-vegetated conditions [Fig. 12(c)].
In contrast, the result from the NDVIre-based method
shows more pixels in the LAI value subrange [5.5, 7]. The
MSR-based method results in more pixels in the LAI value
subrange [5.5, 7] compared to the NDVI-based result, which
is in accordance with the previous findings in Section IV-B
that explain how MSR could overcome the saturation issue to
a certain extent [28]. However, pixels with extremely high LAI
values appear in their LAI image, thus proving that this method
is not robust enough to employ in dense crop monitoring. After
the introduction of red-edge bands, the number of pixels in
the LAI value subrange [5.5, 7] from MSRre- and 3MSRre-
based methods increases compared to the MSR-based result
(Fig. 13), and their performance is fairly similar.

V. DISCUSSION

Quantitative determination and mapping of LAI using
medium-resolution optical imagery is always a challenging
task especially for dense canopies [69], [70]. Many studies
have shown variation and uncertainty between LAI and VIs
due to the tendency for spectral indices to become saturated
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Fig. 10. Comparison of LAI images in HB on March 29, 2017, based on the (a) NDVI-based and (b) NDVIre-based methods. (c) Histograms of LAI images

Fig. 11. Comparison of LAI images in HB on March 29, 2017, based on the (a) MSR-based, (b) MSRre-based, and (c) 3MSRre-based methods. (d) Histograms
of LAI images
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Fig. 12. Comparison of LAI images in HB on April 28, 2017, based on the (a) NDVI-based and (b) NDVIre-based methods. (c) Histograms of LAI images

when LAI increases [1], [25]–[27]. The goal of this article was
to investigate whether the greater red-edge band availability
of Sentinel-2 could improve the quantification of LAI with
vegetation index-based methods.

Although the red band is the most affected spectrum by
chlorophyll because it is where the maximum absorption of
chlorophyll occurs, it becomes saturated at high chlorophyll
values, which results in a displacement in the red-edge domain.
As a result, the reflectance of the RE1 band of Sentinel-2 is
highly influenced by the chlorophyll content, whereas the red
and RE2 bands are moderately influenced as mentioned in
Section IV-A. This result is similar to the results of previous
findings, which indicated that the influence of the chlorophyll
content is constrained within 500–750 nm [71]. Thus it is
possible to replace red with RE2 in the VIs to eliminate the
effect of chlorophyll content on LAI retrieval and consequently
improve the retrieval accuracy. However, the RE1 is not
recommended to replace one of the original bands in the
VIs for LAI retrieval because this band reflectance is mostly
controlled by the chlorophyll content, and it could be used in
combination with the existing VIs to increase information on
canopy status.

The optimal bands for calculating NDVI, MSR, CI and
WDRVI are RE2 and RE3 based on ground-measured LAI
and Sentinel-2 data. The improvement in the LAI estima-
tion accuracy with the utilization of these red-edge bands
is remarkable for NDVI because it suffers from the greatest
saturation problem at large LAI values. For different types of

crops, the values of the VIs of maize are slightly higher than
those of wheat under the same LAI conditions in NDVI, MSR,
CI and WDRVI, which are mainly derived from the spectral
reflectance in the red and NIR bands of Sentinel-2 (Fig. 5 left
column). However, this difference in LAI values for maize
and wheat narrows or even disappears in the VIs involving
RE2 and RE3 (Fig. 5 right column). Under the same LAI
conditions the leaf chlorophyll content of maize is relatively
higher than that of wheat [72]. Because the reflectance of
red decreases while NIR remains almost unchanged as the
chlorophyll content increases [71], the value of the VIs of
maize is greater than that of wheat. The reflectances of
RE2 and RE3 are less sensitive to the variations in chlorophyll
content. Thus, the values of optimal red-edge VIs involved in
RE2 and RE3 are insensitive to the type of crops. As a result,
it is recommended that red-edge VIs with RE2 and RE3 should
be utilized in the LAI estimation especially for a wide range
of crops across multiple growth stages.

For the 3-band red-edge VIs the performance in LAI esti-
mation is slightly improved compared to the performance of
the 2-band red-edge VIs. This kind of improvement, gener-
ally ascribed to more spectral information from the red-edge
domain, is introduced by a weighted coefficient. However,
the added value of the additional red-edge band (especially
RE1) for LAI estimation is also counteracted by the influence
of the chlorophyll content, so the improvement in the accu-
racy of LAI estimation is not obvious for these 3-band red-
edge VIs. The weighted parameter “a” may be diverse with
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Fig. 13. Comparison of LAI images in HB on April 28, 2017, based on the (a) MSR-based, (b) MSRre-based, and (c) 3MSRre-based methods. (d) Histograms
of LAI images

different LAI databases (e.g., different regions and different
vegetation types). As a result, this parameter should be con-
stantly updated before being applied.

Note that underestimation is still observed at LAI > 5
for the red-edge VIs (Fig. 8). One solution for address-
ing this problem is to segment the whole LAI range into
several subranges and then estimate a regression equation
(like Table VI) in each subrange, which may yield higher
LAI estimation accuracy for large LAI values. A similar
method has already been applied for maize and soybean LAI
estimation based on NDVI and red-edge NDVI with an NDVI
threshold setting of 0.7 [73]. Other factors (e.g., the leaf
angle distribution, LAD) can also influence the canopy band
reflectance and then affect the LAI retrieval accuracy. Maize
canopies exhibit a planophile LAD while the wheat canopy
presents a more erectophile LAD [18], [74]. The difference in
LAD might also influence the values of the VIs derived from
satellite data. However, these factors have less of an impact
than LAI and chlorophyll content on canopy reflectance at the
wavelengths we investigated [71], [75]. The leaf chlorophyll
content changes intensely during different growth stages and
its influence is our prime target to eliminate to improve the VIs
for LAI estimation. Nevertheless, the relationships between
LAI and VIs may be better if more factors are taken into
consideration to reduce their impacts.

These 2-band and 3-band red-edge VIs are beneficial for
crop growth monitoring with high spatial and temporal res-
olution in precision agriculture and have been applied in

HB wheat-cultivated regions. The estimated LAI shows more
reasonable values than the NDVI-based results and reflects
better seasonal characteristics of crops which further proves
the credibility and reliability of our proposed red-edge VIs in
LAI estimation. More work is still needed to validate these
red-edge VIs over a broader range of crops and vegetation
types, especially in dense canopies, and to determine a set of
accurate and unified coefficients for LAI estimation in a wider
agricultural system.

VI. CONCLUSION

This article investigates the possibility of using the three
red-edge bands of Sentinel-2/MSI for LAI estimation based
on VIs using ground-measured LAI data on wheat and maize
over three sites in northern China. The sensitivity analysis
results reveal that the first red-edge band (RE1, 705 nm)
is affected by the influence of chlorophyll content the most
followed by the second red-edge band (RE2, 740 nm), while
the third red-edge band (RE3, 783 nm) is affected least.
Taking four VIs NDVI, MSR, CI and WDRVI as examples, we
found that the introduction of red-edge band reflectance can
improve the LAI estimation accuracy especially for NDVI.
For LAI retrievals from Sentinel-2 data, the optimal bands
for calculating NDVI, MSR, CI and WDRVI are RE2 and
RE3 rather than the conventional red and NIR bands. The LAI
validation error is as low as 0.75. Compared to the existing
NDVI calculated from the red and NIR reflectance, the effect
of the saturation problem from the dense canopy (large LAI)
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is reduced but still observable after incorporating the red-
edge VIs. To improve the estimation for a large LAI canopy,
a segmental estimation is also suggested for the red-edge VIs.
Moreover, we proposed four 3-band red-edge VIs (3NDVIre,
3MSRre, 3CIre and 3WDRVIre) for LAI estimation and the
new VIs are found to work better than the 2-band method for
sparse-to-moderatevegetated conditions. Finally, the red-edge
VIs are applied in a wheat-cultivated area for LAI images
retrieved on two dates (corresponding to two growth stages).
Compared to the conventional NDVI-based method, the LAI
estimated using the red-edge VIs is more reasonable especially
in denselyvegetated conditions and reflects better the seasonal
characteristics of crops. Further research is needed to validate
these VIs over a broader range of crops and to determine a
set of accurate and unified coefficients for LAI estimation in
precision agriculture.
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