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A B S T R A C T   

It is important to understand temporal and spatial variations in the structure and photosynthetic capacity of 
tropical rainforests in a world of changing climate, increased disturbances and human appropriation. The 
equatorial rainforests of Central Africa are the second largest and least disturbed of the biodiversly-rich and 
highly productive rainforests on Earth. Currently, there is a dearth of knowledge about the phenological behavior 
and long-term changes that these forests are experiencing. Thus, this study reports on leaf area seasonality and its 
time trend over the past two decades as assessed from multiple remotely sensed datasets. Seasonal variations of 
leaf area in Congolese forests derived from MODIS data co-vary with the bimodal precipitation pattern in this 
region, with higher values during the wet season. Independent observational evidence derived from MISR and 
EPIC sensors in the form of angular reflectance signatures further corroborate this seasonal behavior of leaf area. 
The bimodal patterns vary latitudinally within this large region. Two sub-seasonal cycles, each consisting of a dry 
and wet season, could be discerned clearly. These exhibit different sensitivities to changes in precipitation. 
Contrary to a previous published report, no widespread decline in leaf area was detected across the entire extent 
of the Congolese rainforests over the past two decades with the latest MODIS Collection 6 dataset. Long-term 
precipitation decline did occur in some localized areas, but these had minimal impacts on leaf area, as infer
red from MODIS and MISR multi-angle observations.   

1. Introduction 

Tropical rainforests play an essential role in modulating regional 
climate, surface energy partitioning and the Earth’s carbon cycle (Chen 
et al., 2020; Cook et al., 2020). Understanding the spatial patterns and 
temporal variations and trends in the structure and functioning of 
rainforests, and the underlying mechanisms and their drivers, is crucial 
to gaining insights on how these biodiversly-rich and productive eco
systems will respond to future climate change, disturbances and human 
appropriation (Bi et al., 2015). The seasonal transition between wet and 
dry seasons is a distinct feature of tropical rainforests, which leads to 
intra-annual patterns of leaf flushing and abscission (Bi et al., 2015; 
Samanta et al., 2012). The growth-limiting impact of water deficit on 
rainforest during the dry season could be alleviated through deep roots 
and hydraulic redistribution (Oliveira et al., 2005; Pierret et al., 2016). 

However, a continued decline in leaf area and photosynthetic capacity 
attributed to long-term drying may alter forest composition and struc
ture, such as large-scale tree mortality and dominance of drought- 
tolerant species (Adams et al., 2009; Fauset et al., 2012; Martínez- 
Vilalta and Lloret, 2016). 

Seasonal variations in the Amazonian rainforests has been an active 
research topic in recent years (Brando et al., 2010; Huete et al., 2006; 
Morton et al., 2014; Myneni et al., 2007). The community-consensual 
view is that higher greenness and leaf area appear during the sunlight- 
rich dry season in well-hydrated Amazonian rainforests (Bi et al., 
2015; Brando et al., 2010; Huete et al., 2006; Myneni et al., 2007), even 
though this view has been questioned (Galvão et al., 2011; Morton et al., 
2014). Science questions surrounding the functionality of Amazonian 
rainforests such as drought induced carbon sink variation and impacts of 
human interference are at the center of debates nowadays (Aragão et al., 
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2018; Brienen et al., 2015; Pires and Costa, 2013; Yang et al., 2018b). 
The equatorial rainforests of Central Africa, the second largest and least 
disturbed of the biodiversly-rich and highly productive rainforests on 
Earth (Cook et al., 2020), have attracted less attention compared with its 
Amazonian counterpart. 

The bimodal precipitation pattern (two wet and two dry seasons per 
year) in the Congo basin controlled by the migration of the tropical rain 
belt, is much different from that in the Amazon (Jiang et al., 2019; 
Nicholson, 2018; Raghavendra et al., 2020; Sorí et al., 2017). For all 
vegetation types within the Congo Basin enhanced vegetation index 
(EVI) profiles were found to be highly seasonal and strongly correlated 
to rainfall and to a lesser extent to light regimes (Gond et al., 2013). 
Two-band enhanced vegetation index (EVI2) from the geostationary 
Spinning Enhanced Visible and Infrared Imager (SEVIRI) and polar- 
orbiting Moderate Resolution Imaging Spectroradiometer (MODIS) 
also revealed similar bimodal seasonal pattern (Yan et al., 2016a). It was 
found (Yan et al., 2017) that the spatial variation in wet season timing 
within the Congo Basin exhibited distinct latitudinal gradients whereas 
the variation in the canopy greenness cycle timing was relatively small. 
Analyses of MODIS EVI and solar-induced chlorophyll fluorescence (SIF) 
and fraction of absorbed radiation from the Global Ozone Monitoring 
Experiment-2 (GOME-2) suggest that an annual rainfall threshold of 
approximately 2000 mm yr− 1 determines whether the supply of 
seasonally redistributed subsurface water storage from the wet season 
can satisfy plant water demands in the subsequent dry season; thus 
water availability exerts a first-order control on photosynthetic sea
sonality in tropical forests (Guan et al., 2015; Ndehedehe et al., 2019). 

Recent studies have also revealed a large-scale and long-term drying 
trend during the 1979 to 2010 period over the Congolese rainforests in 
central Africa (Jiang et al., 2019; Raghavendra et al., 2020; Zhou et al., 
2014). This has been linked to a shift in tropical Walker circulation (Hua 
et al., 2018; Hua et al., 2016), intensifying thunderstorm activities 
(Raghavendra et al., 2018) and Madden-Julian oscillation (Raghavendra 
et al., 2020). This drying was supposed to have led to a widespread loss 
in greenness of Congolese forests during 2000 to 2012 as they were 
claimed to be more sensitive and less resilient to climate change as 
compared to its Amazonian counterpart (Hirota et al., 2011; Jiang et al., 
2019; Zhou et al., 2014). On the other hand, some recent studies based 
on latest versions of satellite data reported no significant browning 
signals during the 2000 to 2017 period (Chen et al., 2019; Piao et al., 
2020). As such, the question of greening or browning of Congolese 
rainforests over the past 20 years is still unclear and in debate, especially 
in the context of increasing drying durations and from the perspective of 
biophysical parameters. Moreover, a drying climate over the past two 
decades has been associated with changes in forest composition, leaf 
phenology and community-level functional traits in tropical forests 
(Aguirre-Gutiérrez et al., 2020), which requires further explorations. 

In addition to climatic factors mentioned above, degradational 
transitions in land cover and agricultural expansion also drive the 
vegetation dynamics in rainforests (Costa et al., 2007). Since the Con
golese rainforests are less disturbed by human activities compared with 
other equatorial forests (Cook et al., 2020), the climatic influence is our 
main focus. This study is focused on exploring the intra-annual sea
sonality and its controls, inter-annual variability and long-term trends in 
leaf area of the Congolese rainforests. More specifically, our primary 
objectives are to (i) document seasonal variation in leaf area of Con
golese rainforests and how do seasonal patterns vary latitudinally within 
this large region; (ii) estimate the sensitivity of leaf area to changes in 
precipitation for different regions and seasonal cycles; (iii) analyze long- 
term trends in leaf area; and (iv) assess impact of long-term drying on 
leaf area and leaf optics. Multiple remote sensing datasets and vegeta
tion proxy metrics are analyzed to achieve our objectives. 

Monitoring of dense vegetation such as equatorial rainforests rep
resents one of the most complicated case in optical remote sensing 
because reflection of solar radiation saturates and becomes weakly 
sensitive to vegetation changes. At the same time, the satellite data are 

strongly influenced by changing sun-sensor geometry. This makes it 
difficult to discriminate between vegetation changes and sun-sensor 
geometry effects. As such, the above-mentioned leaf area seasonal 
variation and long-term greening/browning trends revealed by single- 
viewing remotely sensed datasets require more evidence. Our second
ary objective is to demonstrate value of multi-angle observations to 
unambiguously detect changes in properties of dense equatorial forests. 

2. Materials and methods 

2.1. Datasets 

Various variables from several independent satellite sensors over the 
Congo basin were analyzed in this research. These include leaf area 
index (LAI), normalized difference vegetation index (NDVI) (Rouse 
et al., 1974), EVI (Liu and Huete, 1995), land cover maps, land surface 
temperature (LST) and evapotranspiration (ET) from MODIS. Addi
tionally, the following datasets were also utilized in this research: pre
cipitation from Tropical Rainfall Measuring Mission (TRMM), 
photosynthetically active radiation (PAR) from Clouds and Earth’s 
Radiant Energy System (CERES), surface bidirectional reflectance factor 
(BRF) and directional hemispherical reflectance (DHR) from Multi-angle 
Imaging SpectroRadiometer (MISR) on the Terra platform and BRF from 
Earth Polychromatic Imaging Camera (EPIC) on Deep Space Climate 
Observatory (DSCOVR). Table 1 shows datasets used in this study. 

2.1.1. MODIS data 
The Terra and Aqua MODIS Collection 6 (C6) 8-day composite LAI 

products (MOD15A2H and MYD15A2H) for the period of February 2000 
to December 2019 were used in this study. The data are at 8-day tem
poral frequency and projected on a 500-m sinusoidal grid. The C6 
MODIS LAI product correctly accommodates structural and phenolog
ical variability in all biome types and agree with ground truth data 
within root mean square error (RMSE) of 0.66 LAI (Yan et al., 2016b; 
Yan et al., 2016c). 

C6 Terra MODIS monthly NDVI and EVI products (MOD13C2) from 
February 2000 to December 2019 were also used as radiometric mea
sures of vegetation greenness. The NDVI is a vegetation index widely 
used in many studies of vegetation dynamic. It is calculated as the dif
ference between BRFs at near-infrared (NIR) and red spectral bands 
normalized by their sum. The EVI is calculated as the difference between 
BRFs at NIR and red spectral bands normalized by a linear combination 
of BRFs at blue, red and NIR bands. It was found especially useful for 
monitoring vegetation in high biomass tropical broadleaf forests 
(Brando et al., 2010; Xu et al., 2011; Zhou et al., 2014). The C6 
MOD13C2 product is projected on a 0.05◦ geographic Climate Modelling 
Grid (CMG) (Huete et al., 2002). In addition, monthly gridded Collection 
5 (C5) MODIS NDVI/EVI product (MODVI) from February 2000 to 
December 2012 in CMG 1◦ resolution was also used in our study for 

Table 1 
Brief information of variables and datasets used in this study.  

Variable Product Spatial 
resolution 

Temporal 
resolution 

LAI C6 MOD15A2H & 
MYD15A2H 

500 m 8 day 

EVI C6 MOD13C2 0.05◦ monthly 
EVI C5 MODVI 1◦ monthly 
NDVI C6 MOD13C2 0.05◦ monthly 
Land cover C6 MCD12C1 0.05◦ yearly 
LST C6 MYD11C3 0.05◦ monthly 
Evapotranspiration C6 MOD16A2 500 m 8 day 
Precipitation TRMM 0.25◦ monthly 
PAR CERES 1◦ monthly 
BRF Terra MISR 1.1 km 16 day 
DHR Terra MISR 1.1 km 16 day 
BRF DSCOVR EPIC 10 km 65 to 110 min  

Y. Sun et al.                                                                                                                                                                                                                                      



Remote Sensing of Environment 268 (2022) 112762

3

comparisons. 
C6 Terra and Aqua MODIS land cover product (MCD12C1) from 

2001 to 2019 at yearly intervals and at a 0.05◦ spatial resolution was 
used to identify our study area. Maps of several classification schemes 
are available in the MCD12C1 dataset (Friedl et al., 2002). The map of 
LAI classification scheme was adopted in this research (Supplementary 
Information Fig. S1). 

Daytime LST from C6 Aqua MODIS (MYD11C3) for the period July 
2002 to December 2019 was used to quantify temperature variations 
related to changes in leaf area and other climate variables. MYD11C3 
measures the temperature of Earth’s surface thermal emission at local 
time ~ 13:30, which is believed to provide the largest LST contrast 
between vegetated and non-vegetated surfaces compared to other 
MODIS LST measurements. Monthly LST values from the MYD11C3 
product are derived by compositing and averaging values from the 
corresponding month of MYD11C1 daily files, and projected on a 0.05◦

CMG grid (Wan, 2014). 
The Terra MODIS C6 8-day composite evapotranspiration product 

(MOD16A2) projected on a 500-m sinusoidal grid from January 2000 to 
December 2019 was used to quantify climatic water deficit variations. 
The algorithm used to generate MOD16A2 is based on the logic of the 
Penman-Monteith equation, which includes inputs of daily meteoro
logical reanalysis data along with other MODIS products such as vege
tation property dynamics, albedo, and land cover (Mu et al., 2007; Mu 
et al., 2011). 

2.1.2. TRMM precipitation and CERES PAR fluxes 
Monthly precipitation data from the TRMM (3B43 version 7) at 0.25◦

spatial resolution for the period January 2000 to December 2019 was 
used in this study. The 3B43 version 7 TRMM data provides the best- 
estimate precipitation rate and root-mean-square precipitation-error 
estimates by combining four independent precipitation fields (Huffman 
et al., 2007). Monthly at-surface all-sky downward PAR, calculated by 
summarizing direct and diffuse PAR fluxes from CERES (SYN1deg_L3 
product) at 1◦ resolution for the period of March 2000 to November 
2019 was used (Rutan et al., 2015). 

2.1.3. Terra MISR and DSCOVR EPIC data 
Level 2 land surface and aerosol products from MISR (version 3) for 

the period of January 2000 to December 2019 were used in this study. 
The MISR sensor views the Earth’s surface with nine cameras simulta
neously and enables direct measurements of angular variation of forest 
reflected radiation over a wide range of the phase angle that the single- 
viewing sensors (e.g., Terra and Aqua MODIS) can provide only in very 
limited cases (Bi et al., 2015; Song et al., 2018). MISR has a ground track 
repeat cycle every 16 days and achieves global coverage every 9 days. 
The surface reflectances, DHR and BRF, are at 1.1 km spatial resolution. 
The aerosol optical depth (AOD) is available at 4.4 km spatial resolution. 
The surface and aerosol products are projected on Space Oblique Mer
cator (SOM) projection, in which the reference meridian nominally 
follows the spacecraft ground track. The land surface product provides 
BRF at nine MISR view angles (nadir, ±26.1◦, ±45.6◦, ±60.0◦ and 
±70.5◦) in four spectral bands (446, 558, 672, and 866 nm). The MISR 
view directions form “view” lines on the polar plane (Supplementary 
Information Fig. S2). Each view line sees a certain part of the MISR 360 
km swath. 

Level 2 Multi-Angle Implementation of Atmospheric Correction 
(MAIAC) surface BRF retrieved from DSCOVR EPIC observations from 
2016 to 2019 was also used. The EPIC instrument provides imageries in 
near backscattering directions with the phase angle between 4◦ and 12◦

at ten ultra-violet to NIR narrow spectral bands. This feature comple
ments MISR observations since it extends MISR angular sampling to the 
near backscattering directions. The MAIAC BRF are available at four 
spectral bands; they are 443, 551, 680 and 780 nm. Data are projected 
on a 10-km sinusoidal grid and available at 65 to 110 min temporal 
frequency. 

2.2. Data processing 

This study was focused on structurally intact and undisturbed region 
of Congolese tropical moist broadleaf forests in Central Africa (5◦N-6◦S, 
14◦E-31◦E), which were defined as a region with no changes in land 
cover type during the 2000 to 2019 period. First, evergreen broadleaf 
forest pixels in the LAI classification scheme at 0.05◦ resolution for 
which no land use/cover change was detected during the 2000 to 2019 
period were selected. Second, the binary 0.05◦ evergreen broadleaf 
forest images were spatially aggregated into a 0.25◦ coarser resolution 
map to match the spatial resolution of rainfall TRMM dataset. Pixels at 
0.25◦ resolution were labeled as rainforest only if at least 80% of its 
0.05◦ sub-pixels (i.e., 20 in 25 sub-pixels) were forested. Third, those 
isolated pixels in the Congolese forest border were removed at 0.25◦

mask map to minimize human impact. The 1653 pixels at 0.25◦ reso
lution identified by this procedure were considered as structurally intact 
and undisturbed forests. 

All vegetation and climate variables were selected using flags indi
cating highest retrieval quality. The 8-day 500 m LAI products from 
Terra (MOD15A2H) and Aqua (MYD15A2H) MODIS sensors were used 
to generate monthly average LAI values. The cloud contaminated pixels 
were removed. Only the best quality LAI values generated using main 
algorithm were used in our analyses. The monthly LAIs were then 
spatially aggregated onto a 0.05◦ CMG grid (Chen et al., 2019). The 
evapotranspiration data used in our study was generated by selecting 
best-quality retrievals in the MODIS C6 ET product first and then 
degraded to 0.05◦ CMG monthly composites following the same pro
cedure used to obtain LAI dataset. The LAI and NDVI/EVI were further 
refined by removing low quality data by consulting NDVI/EVI quality 
assurance (QA) flags. We selected highest quality LST based on LST QA. 
The LAI, NDVI/EVI, ET and LST datasets over intact and undisturbed 
region of the Congolese forests were then spatially aggregated to 0.25◦

resolution. During the process of spatial aggregation, only pixel whose 
sub-pixels are all valid was retained. Climatic water deficit (CWD) was 
calculated as the difference between potential evapotranspiration and 
actual evapotranspiration from the ET dataset. Nearest neighbor inter
polation was adopted to resample data to 0.25◦ for the C5 NDVI/EVI and 
CERES PAR dataset at a spatial resolution coarser than 0.25◦. 

The MISR surface BRF and DHR were first refined by removing pixels 
with AOD over 0.3. EPIC images at local solar time around 10:30 am 
were used in our analyses, which were also refined by removing pixels 
with AOD over 0.3. MISR and EPIC datasets were further re-projected to 
0.01◦ and 0.1◦ CMG grids, respectively. We expressed BRF and DHR 
values in a coordinate system with the polar axis pointed towards the 
Sun. The view zenith angle in this “sun-tracking” coordinates was given 
by the phase angle, γ, i.e. the angle between the directions to the sun and 
sensor and calculated as: 

γ = acos[cosSZAcosVZA + sinSZAsinVZAcos(SAA − VAA)] (1) 

where SZA, VZA, SAA, VAA are solar zenith angle, view zenith angle, 
solar azimuthal angle and view azimuthal angles (Bi et al., 2015). We 
assigned the sign “plus” to the phase angle if the direction to the MISR 
sensor approached the direction to sun from North, and “minus” 
otherwise (Supplementary Information Fig. S2). In our sun-tracking 
coordinate system, the MISR BRF was a function of SZA, phase angle 
and MISR view line, the latter specified by VZA of the MISR nadir 
camera. 

Monthly BRFs and DHRs accumulated over the 20-year period (2000 
to 2019) were used to analyze seasonal variation of forest canopy 
reflectance. For each month, a median BRF value at each phase angle 
was calculated using all 20-year (2000 to 2019) valid observations of a 
given pixel in our study area. Histograms of valid MISR spectral DHR at 
each SZA accumulated over the 20-year period (2000 to 2019) were 
calculated for each pixel. The most probable values were used to 
represent spectral DHR of regions as a function of SZA. For analysis of 
interannual changes, we used median BRFs over the period of 
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2000–2002 and 2017–2019 to represent the start and the end period, 
respectively. 

2.3. Interpretation of forest BRF 

Reflectance of dense vegetation such as the Congolese forests satu
rates and becomes weakly sensitive to vegetation changes. At the same 
time, the satellite data are strongly influenced by changing sun-sensor 
geometry. This makes it difficult to discriminate between vegetation 
changes and effects of sun-sensor geometry. This section provides an 
overview of a new approach to detect changes in properties of dense 
vegetation using angular distribution of forest reflected radiation as a 
source of diagnostic information. This methodology will be used in 
Section 3.1 and Section 3.4 to corroborate seasonal and long-term 
variation in leaf area. 

In the case of vegetation canopies with a dark background or suffi
ciently dense vegetation where the impact of the canopy background is 
negligible, the BRF can be approximated as (Knyazikhin et al., 2013): 

BRFλ(Ω0,Ω) =
ρ(Ω0,Ω)i0

1 − p
×

ωλ(1 − p)
1 − pωλ

(2) 

The first factor on the right-hand side of Eq. (2),ρ(Ω0,Ω)i0/(1 − p), is 
the Directional Area Scattering Factor (DASF), which describes the 
canopy BRF if the foliage does not absorb radiation. The second factor, 
ωλ(1 − p)/(1 − pωλ), is the Canopy Scattering Coefficient (CSC), i.e., the 
fraction of intercepted radiation that has been reflected from, or diffu
sively transmitted through, the vegetation. Unlike canopy reflectance 
and transmittance, the CSC quantifies scattering event per unit leaf 
surface and therefore conveys information about leaf optical properties. 
Here Ω0~(SZA,SAA) and Ω~(VZA,VAA) are unit vectors directed from 
target to the sun and sensor, respectively; i0 is the canopy interceptance 
defined as the portion of photons from the incident solar beam that 
collide with foliage elements for the first time. The symbol ρ designates 
the directional escape probability, i.e., the probability by which a 
photon scattered by a foliage element will exit the vegetation in the 
direction Ω through gaps. Spherical integration of π− 1ρ ∙  cos (VZA) 
results in 1 − p, where p is the recollision probability, defined as the 
probability that a photon scattered by a foliage element in the canopy 
will interact within the canopy again (Yang et al., 2017). Finally, ωλ is 
the wavelength dependent leaf albedo, i.e., the fraction of radiation 
incident on a leaf surface that is reflected or transmitted (Huang et al., 
2007; Knyazikhin et al., 2011; Wang et al., 2003). We used Eq. (2) to 
interpret the BRF of Congolese forests. A short summary of its key 
properties is given below. 

The spectrally invariant DASF is a function of canopy geometrical 
properties, such as the tree crown shape and size, spatial distribution of 
trees on the ground, and within-crown foliage arrangement (Knyazikhin 
et al., 2013). Since our study is focused on structurally intact and un
disturbed region of the Congolese forests (i.e., no changes in forest ge
ometry), only variation in leaf area can cause variation in DASF. At a 
given SZA, DASF increases with LAI in all phase angles. At a given LAI, 
the DASF exhibits a sharp increase as phase angle tends to zero and 
reaches its maximum value in the retro-illumination direction. This 
phenomenon is known as the hot spot effect. Increasing SZA with con
stant LAI results in an asymmetric transformation of the DASF, i.e., in
crease in its magnitude in backscattering directions, and changes in the 
range of DASF variations for positive and negative phase angles. This 
asymmetric transformation also can cause the two DASF signatures to 
intersect. More details about the effects of changing SZA and LAI on BRF 
can be found in (Bi et al., 2015). 

The spectrally varying CSC is a function of the recollision probability 
and leaf optics. It increases with the leaf albedo: the more the leaves 
scatter, the brighter the canopy. As the recollision probability increases 
with LAI, an increase in LAI triggers an opposite tendency: more photon- 
foliage interactions and consequently a higher chance for photon to be 
absorbed. This tends to lower CSC. Such variations trigger a competing 

process: increase in LAI tends to darken the vegetation while increase in 
leaf albedo suppresses it. Note that DASF increases with LAI. This not 
only compensates for a decrease in the CSC but also makes the BRF an 
increasing function with respect to leaf albedo and LAI. 

The leaf albedo is close to unity, ωλ~1 at weakly absorbing wave
lengths such as NIR. In the case of dense vegetation, the recollision 
probability saturates and become weakly sensitive to LAI. In many in
stances, variation in LAI with leaf albedo unchanged cannot explain the 
magnitude of observed variation in CSC under the reflectance saturation 
conditions. Leaf albedo becomes a key parameter that controls changes 
in the CSC. A detailed mathematical analysis of variation in the CSC 
when LAI and leaf albedo vary simultaneously can be found in (Samanta 
et al., 2012). 

The leaf albedo is close to zero, ωλ~0 at strongly absorbing wave
lengths. The contribution of multiple scattered photons to BRF and CSC 
is negligible. A decrease in LAI while holding leaf optics constant 
necessarily causes a decrease in BRF. The lack of BRF decrease indicates 
an increase in leaf albedo. Clearly this is also true for DHR, which is just 
hemispherically integrated BRF. We will use this property to detect 
changes in leaf albedo. 

We followed a methodology documented in (Marshak and Knyazi
khin, 2017; Song et al., 2018) to approximate DASF. In this approach, 
the green and NIR wavelengths are used. Given the BRF at these two 
wavelengths, the estimate DASF is as: 

DASF =
BRFgreenBRFNIR

BRFgreen − β
(
BRFNIR − BRFgreen

) (3) 

Here BRFgreen and BRFNIR are BRF at green and NIR wavelengths, β =
(1 − ωNIR)ωgreen/(ωNIR − ωgreen), and ωgreen and ωNIR stand for leaf al
bedo at green and NIR spectral bands. DASF defined by Eq. (3) does not 
vary with variation in ωgreen and ωnir as long as canopy structure remains 
unchanged. We used the leaf level albedo of the brightest leaf, whose 
values at green and NIR spectral bands were ω555 = 0.472, ω865 = 0.978 
for MISR and ω551 = 0.490, ω779 = 0.979 for EPIC. These values were 
obtained from Lewis and Disney’s approximation (Lewis and Disney, 
2007) of the PROSPECT model (Féret et al., 2008) with the following 
parameters: chlorophyll content of 16 μg cm− 2; equivalent water 
thickness of 0.005 cm− 1, and dry matter content of 0.002 g cm− 1. It was 
shown that retrieval of DASF using this methodology is weakly sensitive 
to the uncertainties in the spectral properties of the atmospheric optical 
depth above the canopy, and the spectral CSC is very sensitive to the 
presence of chlorophyll in the scene (Marshak and Knyazikhin, 2017). 

2.4. Correlation and trends analysis 

Correlation of monthly average leaf area and the corresponding cli
matic variables (e.g., precipitation, PAR) was assessed using Pearson’s 
correlation coefficient. Trends in seasonal average variables (e.g., LAI) 
for the period of 2000 to 2012 and 2000 to 2019 were evaluated by 
ordinary least square (OLS) regression test using noise-removed dataset, 
and the trends with P ≤ 0.1 were considered as statistically significant in 
this study to make our results comparable with those reported in (Zhou 
et al., 2014). 

3. Results 

3.1. Seasonal variation of leaf area and leaf optics 

Monthly precipitation data over the Congolese forests show a 
bimodal variation that suggests two wet and two dry seasons during the 
year. It varies between its maximum of about 219 mm in October and the 
minimum of about 86 mm in January (Fig. 1). The wet seasons occur in 
March-April-May (MAM, wet season 1) and September-October- 
November (SON, wet season 2), while dry season months are December- 
January-February (DJF, dry season 1) and June-July-August (JJA, dry 
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season 2) (Fig. 1 and Supplementary Information Fig. S3a). The PAR 
data exhibit a quasi-bimodal pattern, although somewhat less distinctly: 
clear-cut variations from December to October and a weak oscillation 
from October to December (Fig. 1 and Supplementary Information Fig. 
S3). The sub-seasonal cycle 1 from December to May (dry season 1 and 
wet season 1) shows less precipitation and more PAR, while cycle 2 from 
June to December has more precipitation and less PAR (Fig. 1 and 
Supplementary Information Fig. S3). Monthly average LAI and EPIC NIR 
BRF data over the Congolese forests also exhibit notable bimodal sea
sonal variations, which follow the patterns of precipitation (Fig. 1 and 
Supplementary Information Fig. S3a and b). LAI varies between its 
maximum of about 5.7 during the wet seasons and a dry season mini
mum of about 4.6. 

Congolese forests can be further divided into four phenological re
gions based on normalized 20-year mean monthly climatology of pre
cipitation, PAR and LAI using a K-means clustering method, which is an 
unsupervised measure to find similar features from multiple inputs 
(Celik, 2009; Xu et al., 2015). We use the four-cluster partition in this 
study because clusters are big enough to accumulate valid data for sta
tistical analyses and their respective homogeneities are preserved 
(Fig. 2). Other numbers of clusters are also tested to find an optimal 
partitioning, and all clusters were generally parallel to the Equator 
(Supplementary Information Fig. S4), likely because the seasonality of 
these forests is mainly controlled by the migration of the tropical rain 
belt and variation of solar radiation along the latitude. Distinct seasonal 
patterns of climatic and vegetation variables are clearly seen in all 

phenological regions across the Congo Basin (Fig. 3). The amplitude of 
all variables tends to increase from region 1 (north) to region 3 (south) 
between March and October, which makes the bimodality more distinct. 
The highland forest (region 4) is characterized by lower LAI values and 
higher rainfall compared to its lowland counterparts, which is typical of 
montane forests. The EPIC sensor likely sees different slopes of the 
mountains; hence the NIR BRF is somewhat less synchronized with LAI 
compared to other regions. We exclude this region from further analyses 
given its smaller areal extent and specific character. 

Spectrally invariant DASF is a function of canopy geometrical 
properties, such as the tree crown shape and size, and leaf area density 
within the canopy. The DASF derived from MISR and EPIC observations 
of selected regions during wet and dry seasons are different (Fig. 4, left 
Panels), showing a districting decrease in all directions from wet 
(October, November) to dry (January) seasons. Such a downward shift 
in DASF can only result from a negative change in LAI because other 
structural variables, such as tree crown shape and size do not vary 
seasonally in our forests. BRF at NIR spectral band exhibits similar 
behavior: a decrease in reflected radiation in all directions from October 
(November) to January (Supplementary Information Fig. S5), which 
suggests more green leaves during the wet season. The CSC shows an 
opposite tendency, i.e., a positive increase between wet and dry seasons 
at all spectral bands (Fig. 4, right panels). The decline in LAI is one 
reason for the observed increase (Section 2.3). A change in leaf albedo is 
another reason that can impact this coefficient (Section 2.3). Decrease in 
leaf albedo lowers the CSC value whereas its increase results in the 
positive change of the CSC value. The question then arises whether one 
can detect changes in the leaf albedo given changes in the CSC. 

A reduction of leaf area tends to decrease forest canopy reflectance 
(BRF and consequently DHR). At strongly absorbing red (672 nm) 
wavelength, however, the DHR has increased between wet and dry 
seasons from 0.014 to about 0.024 in regions 1 and 2 and from 0.015 to 
0.018 in region 3 (Fig. 4, left panels). This increase in DHR with 
decreasing LAI necessarily indicates an increase in leaf albedo (Section 
2.3). This also takes place for strongly absorbing blue (446 nm) and 
moderately absorbing green (551 nm) wavelengths: no decrease in DHR 
from wet to dry season. This suggests an increase in leaf albedo at visible 
spectral bands. At NIR (866 nm) wavelength, forest canopy reflectance 
and CSC show opposite tendencies, namely, BRF (and DHR) decrease 
whereas CSC increases between wet and dry seasons. Similar tendencies 
were documented for the Amazonian rainforests (Köhler et al., 2018) 
and for sufficiently dense broad- and needleleaf forests in the USA 
(Knyazikhin et al., 2013). A decrease in LAI (and consequently, the 
recollision probability) tends to increase the CSC (Section 2.3). Under 
saturation conditions, however, the change in the recollision probability 

Fig. 1. Annual course of monthly-average precipitation, PAR, LAI, EPIC NIR BRF over the Congolese forests. The annual cycle is repeated two times for better 
demonstration. Precipitation, LAI and NIR BRF clear show bimodal variations with peaks in March-April-May (MAM, wet season 1) and September-October- 
November (SON, wet season 2). 

Fig. 2. Four phenological regions clustered based on normalized 20-year mean 
monthly climatology of precipitation, PAR and LAI data using K-Means clus
tering method. Region 4 (0.2◦S-3◦S, 26.8◦E-28.5◦E) represents montane forests 
located at moderate elevations between 530 m and 1728 m. 
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is negligible. The observed variation in CSC is therefore likely due to a 
positive change in the leaf albedo. 

The sensitivity analyses based on the PROSAIL model (Jacquemoud 
et al., 2009) suggest that under saturation conditions (LAI > 4), the 
scattering coefficient is nearly insensitive to variations in LAI and SZA 
(Supplementary Information Fig. S6, panels a and b). The observed 
changes in the CSC between wet and dry seasons therefore are not due 
variation in LAI and SZA. In the spectral interval between 450 nm and 
about 750 nm, chlorophyll is the dominant pigment that absorbs radi
ation primarily in the blue and red regions of the spectrum, less in the 
green and essentially none in NIR. This feature makes the CSC sensitive 
to its concentration in the green and flat in NIR spectral bands (Sup
plementary Information Fig. S6, panel c). The chlorophyll absorption 
spectrum declines rapidly with wavelength near the red spectral region 
and vanishes at about 770 nm, resulting in a sharp jump in the spectrum 
of leaf albedo from its minimum to a plateau around 800 nm. The 
magnitude of this plateau is controlled by the amount of dry matter. This 
imparts sensitivity of the NIR CSC to the concentration of dry matter 
(Supplementary Information Fig. S6, plot d). 

In summary, seasonal variation of leaf area in Congolese forests co- 
varies with the bimodal precipitation pattern, with higher values dur
ing the wet seasons. The bimodal pattern is different in the three iden
tified regions, with its bimodality more distinct from the south to the 
north. The canopy scattering coefficient exhibits an opposite tendency: 
its value increases from wet to dry and decreases from dry to wet sea
sons. These variations can be linked to variation in the concentrations of 
chlorophyll and/or dry matter in green leaves. 

3.2. Sensitivity of leaf area to changes in precipitation 

Pearson’s correlation coefficients between monthly average precip
itation, PAR and LAI for the identified regions (Fig. 2) and seasonal 
periods are shown in Table 2. With the exception of region 3 and 

seasonal cycle 1, a significant positive correlation between precipitation 
and LAI is observed. Moreover, the time series of 20-year monthly 
precipitation and LAI over the Congolese forests are also significantly 
positively correlated (R = 0.67, P < 0.01, Supplementary Information 
Fig. S7). Such correlations between LAI and PAR (P < 0.01) are found in 
regions 1 to 3 during the cycle 2 (June through November) and in region 
3 during the cycle 1 (December through May). These variables are 
negatively correlated (P < 0.1) in region 1 during cycle 1 (Table 2). 

We estimate the sensitivity, ∆LAI/∆precipitation, of monthly LAI to 
changes in precipitation for different regions and seasonal cycles using 
the slopes of linear regressions. The overall sensitivity of LAI to changes 
in precipitation varies between regions and depends on the seasonal 
cycle. It tends to decrease from north to south for the full seasonal cycle 
(December to November) (Fig. 5a). The regions show weak variation of 
the sensitivity within seasonal cycles (cf. Fig. 5b and c). LAI exhibits a 
stronger response to changes in the precipitation during the seasonal 
cycle 1 (December to June). This difference is due to very different 
distributions of precipitation, PAR and climatic water deficit during 
cycles 1 and 2 (Supplementary Information Fig. S8). More precipitation 
occurs in cycle 2 than in cycle 1, causing a higher climatic water deficit. 
Thus, LAI in our forests is more sensitive to the changes in precipitation 
during cycle 1. 

3.3. Long-term trends in leaf area 

A widespread decline in Congolese rainforest greenness over the 
2000–2012 period has been recently reported (Jiang et al., 2019; 
Raghavendra et al., 2020; Zhou et al., 2014). This result however was 
questioned, suggesting no significant browning signal in the 2000 to 
2017 period (Chen et al., 2019; Piao et al., 2020). These contradictory 
results justify a re-examination of the long-term trend in greenness of the 
Congolese forests. Here, we reproduce linear trends in C5 EVI and pre
cipitation in April-May-June for the 2000 to 2012 period as reported in 

(a) (b)

(c) (d)

Fig. 3. Annual course of monthly-average precipitation, PAR, LAI, EPIC NIR BRF over (a) region 1, (b) region 2, (c) region 3 and (d) region 4. Phenological regions 
are shown in Fig. 2. The annual cycles are replicated two times for better demonstration. The peak-to-peak amplitude of bimodal curves tends to increase from north 
(region 1) to south (region 3). 
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(Zhou et al., 2014) and for an extended period of 2000 to 2019 first, and 
then generate linear trends in C6 EVI, NDVI and LAI for the same 
periods. 

The MODIS C5 EVI declines over 98% of the study area, with 54% 
showing a significant negative trend (P < 0.1) (Fig. 6a). TRMM 

precipitation declines over 77% of the area with 13% indicating sig
nificant change with P < 0.1 (Fig. 6b). These results suggest decrease in 
rainfall and widespread decline in Congo rainforest greenness from 2000 
to 2012. Note that “drying area” is reduced from 77% to 63% (13% to 
5% with P < 0.1) for the period of 2000 to 2019. 

The widespread decline of Congo rainforest greenness in the 2000 to 
2012 period has disappeared in the latest Collection 6 MODIS data 
(Fig. 6, middle panels). Our re-analyses suggest declines in EVI, NDVI 
and LAI over 43% to 51% of the study area with only 2% to 5% showing 
significant negative trends (P < 0.1). For the longer period (2000 to 
2019), the browning areas have been reduced to 19%–42%, with а 
negative trends below 4% (P < 0.1) (Fig. 6, lower panels). The difference 
in the trends is attributable to Terra MODIS sensor degradation found in 
C5 data (Wang et al., 2012; Zhang et al., 2017). 

The regional mean precipitation and PAR over 20 years do not show 
significant positive or negative trends for all seasons across the Congo 
basin because of strong interannual variability (Supplementary Infor
mation Fig. S9). The regional mean LAI, however, increases by 0.0865 
(P = 0.0168) per decade during wet season 1 (March to May) from 2000 

Fig. 4. Directional Area Scattering Factors (DASF) derived from MISR and DSCOVR EPIC data (left panels), MISR Directional Hemispherical Reflectances (DHR) and 
Canopy Scattering Coefficients (CSC) during wet and dry seasons over region 1 (panels a and b), region 2 (panels c and d) and region 3 (panels e and f). The circles 
and solid triangles represent MISR and DSCOVR EPIC observations. The lines show polynomial fits to MISR data. There were no enough valid reflectance data over 
region 3 in October. Therefore, we use November to represent the dry season in this region. 

Table 2 
Pearson’s correlation coefficients of regional mean monthly LAI and precipita
tion and PAR over different region and different seasonal cycle. (*P < 0.1, **P <
0.01).   

Cycle 1 Cycle 2 annual 

R (TRMM, LAI) 

Entire region 0.68** 0.59** 0.63** 
Region 1 0.81** 0.41** 0.78** 
Region 2 0.58* 0.55** 0.56** 
Region 3 0.13 0.65** 0.48** 

R (PAR, LAI) 

Entire region 0.01 0.67** − 0.01 
Region 1 − 0.17* 0.46** − 0.29** 
Region 2 − 0.07 0.64** 0.07 
Region 3 0.25** 0.73** 0.52**  
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to 2019 (Supplementary Information Fig. S9b), and the leaf area trends 
are also positive but not significant for the other wet or dry seasons 
(Supplementary Information Fig. S9a, c, d). 

3.4. Impact of drying trends on leaf area and leaf optics 

Here we focus on a South-East part (0.5◦N-2.5◦S, 25.5◦E-28.5◦E) of 
our study area, where a significant precipitation decline is observed 
(Figs. 7a and b), with the goal of understanding the impact of this event 
on changes in forest structure and leaf optics. 

With the exception of NDVI in the dry season 2 (June to August), no 
significant decline or increase in trends in regional mean NDVI, EVI and 
LAI over the past two decades are detected. The time series of LAI and 
EVI are found to be strongly correlated with R = 0.56 (P < 0.01) in wet 
season 1 (MAM) and R = 0.74 (P < 0.01) in dry season 2 (JJA). 

Next, we examine MISR BRFs at NIR (866 nm) spectral band over the 
region with significant drying happened during the early (2000− 2002) 
and later (2017–2019) part of the 20-year observation period. Reflec
tance in April (wet season) and June (dry season) are under almost 
identical observation and illumination conditions (Fig. 8 left panels). No 
significant differences in magnitude and shape of angular signatures of 
the reflected radiation at the beginning and the end of our observation 
period have been detected. Similarly, no changes in the canopy spectral 
coefficient at all MISR spectral bands are found. These findings suggest 
no changes in structure and leaf optics of the Congolese forests before 
and after the observed drying event. Thus we conclude, MODIS NDVI, 
EVI and LAI long-term records and MISR angular signatures of forest 
reflected radiation show no signs of long-term drying impact on struc
ture and leaf optics of the Congolese forests. 

4. Discussion 

Tropical rainforests play an essential role in modulating regional 
climate, surface energy balance and the Earth’s carbon cycle (Chen 
et al., 2020; Cook et al., 2020). Understanding the seasonal and long- 
term variations in the structure and function of these ecosystems is 
crucial to prognosing their response to climate change (Bi et al., 2015). 
The equatorial central African rainforests, the second-largest on Earth 
after the Amazonian rainforests, is still lacking systematic analyses of its 
phenological behavior and interannual variation. The purpose of this 
study is to analyze seasonal changes and long-term trends in leaf area in 
intact and undisturbed regions of the Congolese rainforests (Supple
mentary Information Fig. S1) using remote sensing data from the past 
two decades. We focus on the analysis on three regions identified with 
normalized 20-year mean monthly climatology of precipitation, PAR 
and LAI by using a K-means clustering algorithm, an unsupervised 
measure to find similar features from multiple inputs (Fig. 2). This 
clustering technique also localizes a highland region in the southeast 
part (Region 4 in Fig. 2) that represents a montane ecosystem. 

Monthly precipitation data from TRMM show a bimodal variation 
over the Congolese rainforest, suggesting two dry (December-January- 
February and June-July-August) and two wet (September-October- 
November and March-April-May) seasons (Fig. 3). This is consistent 
with other precipitation datasets, such as Global Precipitation Clima
tology Centre (GPCC), Global Precipitation Climatology Project (GPCP) 
and Climatic Research Unit (CRU) (Jiang et al., 2019; Raghavendra 
et al., 2020; Sorí et al., 2017). Monthly average LAI from MODIS and 
forest canopy reflectance from EPIC follow seasonal patterns of precip
itation, with higher values during the wet seasons (Fig. 3). The PAR 
incident on the forest canopy also exhibits a bimodal pattern, although 
somewhat less distinct: clear-cut variations from December to October 

(a)

(b) (c)

Fig. 5. Relationship between regional monthly precipitation and LAI during (a) full annual seasonal cycle, (b) seasonal cycle 1 (December–May) and (c) cycle 2 
(June–November). Slopes of the regression lines are taken as a measure of LAI sensitivity to changes in in the precipitation (ΔLAI/ΔPrecipitation). 
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and a weaker oscillation from October to December. Sub-seasonal cycle 
from December to May shows less precipitation and more PAR, while the 
cycle from June to December has more precipitation and less PAR 
(Fig. 3). The bimodal patterns vary latitudinally with the amplitude 
increasing from North to South (Fig. 3). 

The MODIS LAI values used in this research are mostly retrieved 
under the condition of reflectance saturation. The seasonality of satellite 
data-based LAI may therefore result from a decreased retrieval accuracy 
and/or variation in sun-satellite sensor geometry (Galvão et al., 2011; 
Morton et al., 2014). We develop a new approach that allows us to 
unambiguously detect changes in properties of the Congolese rainforest 
using angular variation of forest BRF as a source of diagnostic infor
mation. This methodology is applied to obtained independent observa
tional evidence from MISR and EPIC data in support of the validity of the 
satellite derived seasonal variation in leaf area. Angular variations of 
forest DASF and canopy reflectance observed by the MISR and EPIC 
sensors clearly show seasonal increases and decreases in the amount of 
radiation reflected by the Congolese forests in all directions simulta
neously (Fig. 4; Supplementary Information Fig. S5). Such changes can 
only be attributed to corresponding seasonal increases and decreases of 
LAI. This corroborates the seasonal behavior of leaf area derived from 
the MODIS observations. We also find that the canopy scattering coef
ficient exhibits an opposite tendency: its value increases from wet to dry 
and decreases from dry to wet seasons in the Congolese rainforests 
(Fig. 4, right panels). Similar tendencies were also found in Amazonian 
rainforests (Köhler et al., 2018). Such variation can be linked to varia
tion in the concentrations of chlorophyll and/or dry matter in green 
leaves (Supplementary Information Fig. S6). In summary, our approach 

based on exploiting angular variation of forest reflected radiation as a 
source of diagnostic information, rooted in physics of radiative transfer, 
allows us to unambiguously detect changes in canopy structure and leaf 
optics. This undoubtedly offers the benefit of greater reliability of our 
conclusion. 

A significant positive correlation between precipitation and LAI is 
observed for our study area and seasonal cycles (Table 2). The time 
series of 20-year monthly precipitation and LAI over the Congolese 
forests are significantly positively correlated (R = 0.67, P < 0.01, Fig. 
S7). Whereas LAI and precipitation are always positively correlated, 
correlation between LAI and PAR can be both negative as during cycle 1 
in regions 1 and 2 and positive as in cycle 2 (Table 2). These findings 
suggest that the observed seasonality of LAI is mainly controlled by 
precipitation in the Congolese rainforests (Gond et al., 2013; Yan et al., 
2016a), as contrast to its Amazonian counterpart, where LAI is positive 
correlated with PAR (Bi et al., 2015; Brando et al., 2010; Huete et al., 
2006; Myneni et al., 2007). Abundant annual precipitation (2332 mm 
yr− 1) creates a well-hydrated environmental condition in the Amazo
nian rainforests (Yang et al., 2018a), thus the water is not a main limi
tation and higher leaf area appears during the sunlight-rich dry season. 
А decrease in annual precipitation (1775 mm yr− 1) makes the leaf 
flushing and photosynthesis in the Congolese rainforests more depen
dent on water supply, especially in dry season when the monthly pre
cipitation can fall below 90 mm (Fig. 1). Less solar radiation during the 
dry season (Figure1 and Supplementary Information Fig. S3) may lead to 
lower leaf area in the Congolese rainforests. This, however, can only 
explain LAI decrease in dry season 2 (JJA). In addition, a low-level 
cloudiness developing during the dry season 2 causes high quality of 

(a) C5 EVI (b) TRMM precipitation (c) TRMM precipitation

(d) C6 EVI (e) C6 NDVI (f) C6 LAI

(g) C6 EVI (h) C6 NDVI (i) C6 LAI

Fig. 6. Linear trends per decade in April-May-June for the period of 2000–2012 and 2000–2019. Pixels with the plus symbol indicate statistically significant trends 
(P < 0.1). Percentages of pixels with negative trends and negative trends at P < 0.1 are shown above each plot. The upper plots show trends in MODIS Collection 5 
EVI from 2000 to 2012 (panel a) and TRMM precipitations for the 2000 to 2012 (panel b) and 2000 to 2019 (panel c) periods. Trends in MOIDIS Collection 6 EVI, 
NDVI and LAI for the 2000 to 2012 and the 2000 to 2019 periods are shown in middle and lower plots, respectively. 
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light that sustain a more efficient photosynthesis (Mercado et al., 2009; 
Philippon et al., 2019), which should benefits leaf area growing. Hence, 
water supply is believed as the main limitation for seasonal leaf area 
variation. From the ecological perspective, the difference in the total 
annual precipitation and its diverse intra-annual variability strongly 
influence phenological behavior of rainforests and other vegetation 
types in the tropical regions (Ndehedehe et al., 2019; Yan et al., 2017). 

Distinct spatiotemporal dependence of leaf area sensitivity to the 
seasonal variation in precipitation is observed in the Congo basin. The 
sensitivity of LAI to changes in precipitation tends to decrease from 
north to south for the full seasonal cycle (December to November, 
Fig. 5a). The phenological regions (Fig. 2) show weak variations of the 
sensitivity within a seasonal cycle (cf. Fig. 5b and c). LAI exhibits a 
stronger response to changes in precipitation from December to June 
compared to the second seasonal cycle (June to November). This dif
ference is attributed to very different distributions of precipitation, PAR 
and climatic water deficit during the two seasonal cycles (Supplemen
tary Information Fig. S8). Note that only very few factors were 
accounted for in our analyses. Further analyses of combined effects of 
precipitation, PAR, and other factors are needed to obtain a compre
hensive insight into the causes of leaf area seasonal variation. Besides, a 
better understanding of the phenological response of Congolese rain
forests depends on further in situ studies as satellite data can only 
complement but not substitute field data. 

A widespread decline in Congolese rainforest greenness over the 
2000–2012 period has been recently reported (Jiang et al., 2019; 
Raghavendra et al., 2020; Zhou et al., 2014). This result however was 
questioned, suggesting no significant browning signal in the 2000 to 
2017 period (Chen et al., 2019; Piao et al., 2020). These contradictory 

results justify a re-examination of the long-term trend in greenness of the 
Congolese forests. 

We reproduce their result using the same Terra MODIS C5 EVI data 
(Fig. 6, upper panels), which is then compared to that from the latest 
MODIS C6 EVI dataset. We find that the widespread decline of Congo 
rainforest greenness disappear in the latest C6 MODIS data (Fig. 6, 
middle and lower panels): only 2% to 3% of the forests show significant 
negative trends in EVI, NDVI and LAI (P < 0.1) compared to 54% (P <
0.1) decline in EVI reported in (Zhou et al., 2014). The difference in the 
trends detected by C5 and C6 EVIs is attributed to the Terra MODIS 
sensor degradation for the period after 2007 (Lyapustin et al., 2014; 
Wang et al., 2012; Zhang et al., 2017). Moreover, a significant increase 
in total aerosols over the Congolese rainforests within the last decade 
has been detected (Moparthy et al., 2019). This can amplify the apparent 
long-term trends of canopy greenness these changes in aerosol loads are 
not correctly taken into account. C6 data reprocessing has significantly 
alleviated these problems (Detsch et al., 2016; Zhang et al., 2017) and 
made the result more credible. 

A significant precipitation decline has been observed in the South- 
East part of our study area (Figs. 7a and b). However, no significant 
decline or increase in trends in regional mean NDVI, EVI and LAI over 
the past two decades are detected (Figs. 7c and d). The time series of LAI 
and EVI are found to be strongly correlated with R = 0.56 (P < 0.01) 
during wet (March-April-May) and R = 0.74 (P < 0.01) during dry 
(June-July-August) seasons. We also find no significant differences in 
magnitude and shape of angular distribution of forest reflected radiation 
and leaf optics at the beginning and the end of our observation period 
(Fig. 8). Thus, MODIS NDVI, EVI and LAI long-term records and MISR 
angular signatures of forest reflected radiation show no signs of drying 

(a) (b)

(c) (d)

Fig. 7. Upper panels. Precipitation linear trends per decade during (a) wet season 1 (MAM) and (b) dry season 2 (JJA) for the period of 2000–2019. Pixels with the 
plus symbols indicate statistically significant trends (P < 0.1). A region between 0.5◦N-2.5◦S and 25.5◦E-28.5◦E where a significant precipitation decline was 
observed both during the wet and dry seasons is shown as a green rectangle. Lower panels. Standardized regional mean anomalies in LAI, NDVI and EVI for the 
selected region during (c) wet (MAM) and (d) dry (JJA) seasons for the 2000–2019 period. The linear trend (with 95% confidence interval) per decade and its 
significance level P are shown in legends. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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impact on structure and leaf optics even in the South-East part of the 
Congolese forests where a significant drying is observed. 

Long-term drying does not induce vegetation degradation, and 
possible explanations for the neutral response of leaf area to the declines 
in precipitations at the seasonal and inter-annual scales could be given 
as follows. First, the decrease in monthly precipitation under a long-term 
drying condition is much smaller compared to a wet-to-dry precipitation 
amplitude of about 219 mm to 86 mm (Fig. 1), which still can satisfy 
plant water demands. Dry frequency is not high enough to suppress 
compensation of water supply from other months or seasons, allowing 
the forest to endure precipitation deficit. Second, decades of long-term 
drying in the Congolese rainforests may result in more drought- 
adapted species compared with other tropical forests, and this adap
tive mechanisms by utilization of soil water reserves can tolerate water 
deficit short-time events (Asefi-Najafabady and Saatchi, 2013; Borchert, 
1998). Third, suitable climate conditions—slight temperature increase 
and climatic water deficit decline (Supplementary Information Fig. 
S10), may benefit the growth of vegetation (Li et al., 2019) and in turn 
offset the negative impact from precipitation decline. More compre
hensive explorations, such as model-based study, on this debate are still 
needed in the future investigation to get a better understanding. 

5. Conclusion 

This study comprehensively evaluated the seasonality and long-term 
trends of leaf area in Congolese forests with multiple remotely sensed 
datasets. We found that the seasonal variations of leaf area from MODIS 
data co-vary with the bimodal precipitation pattern, with higher values 
during the wet season, and the bimodal patterns vary latitudinally 
within this large region. Angular reflectance signatures derived from 
MISR and EPIC data further corroborated this seasonal behavior of leaf 
area. Two sub-seasonal cycles, each consisting of a dry and wet season, 
exhibited different leaf area sensitivities to changes in precipitation. No 
widespread decline in leaf area was detected across the Congolese 

rainforest over the past two decades with the latest MODIS C6 dataset. 
Long-term drying did happen in some local areas of Congolese forests; 
however, those had minimal impacts on leaf area detected from MODIS 
and MISR observations. 
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Fig. 8. MISR BRF at NIR (866 nm) and canopy scattering coefficient (right panels) of the region with significant drought at the beginning (2000–2002) and at the end 
(2017–2019) of the 2000–2019 observation period. Upper and lower panels show BRF and the coefficient in April (wet season) and June (dry season), respectively. 
These variables other months show similar behavior. 
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Appendix A. Supplementary data 

Supplementary data to this article can be found online at https://doi. 
org/10.1016/j.rse.2021.112762. 
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