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Crop Leaf Area Index Retrieval Based on Inverted
Difference Vegetation Index and NDVI

Yuanheng Sun™, Huazhong Ren™, Tianyuan Zhang

Abstract—Leaf area index (LAI), an important parameter
describing a crop canopy structure and its growth status, can be
estimated from remote sensing data by statistical methods involv-
ing vegetation indices (VIs). This letter reports the development
of a new VI, the inverted difference vegetation index (IDVI),
for crop LAI retrieval. The IDVI can overcome the saturation
issue of the normalized difference vegetation index (NDVI) at
high LAI values and exhibits robust insensitivity to crop leaf
water and chlorophyll content. By combining the IDVI and
NDVI with a scaling factor, we constructed a novel statistical
regression model with parameters that can be calibrated to a
specific region to estimate the LAIL Validations on simulated
data and in situ observations show that the proposed retrieval
method with the IDVI is stable for low and high LAls and obtains
better results than the empirical method involving the NDVI
at the regional scale. Findings in this letter will benefit future
agricultural applications.

Index Terms—Crop, inverted difference vegetation index
(IDVI), leaf area index (LAI), normalized difference vegetation
index (NDVI), sensitivity analysis.

I. INTRODUCTION

EAF area index (LAI), a key indicator of a crop canopy
structure and growing status, provides crucial information
on health diagnosis, yields prediction and other practical agri-
culture applications. Based on the parts of vegetation which
are accounted, it could be defined as the green area including
the stem and wilted leaf [plant area index (PAI)] or the purely
green leaf area [1]. Conventional crop LAI acquisition depends
on ground-based measurements, which is relatively accurate
but labor-intensive and often inefficient [2]. Remote sensing
offers a quick and convenient approach for estimating the
crop LAI across wide areas and has been used widely in LAI

mapping for croplands [3].
Multispectral imageries, such as data from Landsat-8/OLI
and Sentinel-2/Multispectral Instrument (MSI), remain the
most practical commonly used data source in the remote
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sensing crop LAI estimation. Time series data collected over
40 years, together with forthcoming high-temporal resolu-
tion imageries, provide abundant information with which to
improve the modeling of the LAI retrieval. Numerous preci-
sion farming applications, such as crop irrigation management,
within-field fertilization, and time determination for harvest,
will greatly benefit from these improvements. Retrieving LAI
from the multispectral imagery can be roughly grouped into
two types [4]. The first type comprises statistical methods
derived from spectral VIs [5]. The second type encompasses
the physical retrieval models that usually simulate the spectral
and bidirectional canopy reflectance by using a radiative trans-
fer model first and then reverse LAI with the known reflectance
and other auxiliary information [6]. The statistical methods are
convenient for the development and effectiveness of calcula-
tions and, thus, widely used in regional applications. However,
the applicable statistical method depends on the variability
and quality of data used in the model calibration. To refine
the results, research works on calibration at different times,
sites, and biomes have been conducted to stabilize the specific
statistical relationship between the LAI and VIs [7], [8].

Besides site and biome calibration issues, other problems
that limit the accuracy of statistical models in estimating LAI
remain. Some widely used VIs, such as the normalized differ-
ence vegetation index (NDVI) and the soil-adjusted vegetation
index (SAVI), become saturated when the LAI is sufficiently
high (i.e., LAI > 2) [9]. Thus, the resulting estimations retain
some uncertainty, even at the regional scale with site-specific
calibration. This letter focuses on two topics to weaken the
influence of the saturation issue on the crop LAI estimation
from the statistical methods. First, a robust and stable VI that is
sensitive to the LAI changes at high LAI ranges but insensitive
to other factors is necessary. Second, the weighted ratio of the
optimal VIs for the LAI estimation should be adaptive and
robust to the LAI changes.

To address the saturation issue, this letter first proposes
the inverted difference vegetation index (IDVI) to circumvent
the saturation of the NDVI at high LAI Analyses of the
sensitivity and the time series of the index are discussed
thereafter. A scale factor is then introduced to combine the
NDVI and IDVI for the overall LAI retrieval process based
on the multiple channels in the Sentinel-2A Multispectral
Instrument. Finally, the retrieval results are validated against
the simulated and in sifru LAI observation data.

II. DATA COLLECTION

A. Simulated Canopy Reflectance

The crop canopy spectral reflectance and its corresponding
LAI value are required in developing and analyzing the
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TABLE I

NOMINAL VALUES OR RANGE OF PARAMETERS
USED IN THE PROSAIL MODEL

Input parameters Nominal values or ranges
Cab (chlorophyll content, pg/cm?) 23.0-63.0
Car (carotenoids content, pg/cm?) Cab/5
Cw (water content, g/cm?) 0.005 - 0.045
Cm (dry matter content, g/cm?) 0.003 - 0.008
N (Leaf mesophyll structure index) 1.0-2.0
LAI (Leaf area index, m%/m?) 0.1-6.0
ALA (Average leaf angle, °©) 35-65
SZA (Sun zenith angle, °) 20 - 60
OZA (Observation zenith angle, °) 0-40

110°0'0"E ~ 120°0'0"E

Fig. 1. Location of Hengshui in the North China Plain and the distribution of
LAI measurement sites across the study area. ESUs within a site are shown in
a 10-m resolution false-color-composited map based on the Sentinel-2 data.

multispectral VIs. In this letter, the PROSAIL model [10]
composed of PROSPECT-5B and 4SAIL is adopted to sim-
ulate the canopy reflectance. The biochemical and biophysical
properties of wheat from our field measurements and other
crops from the scientific literature are used as constraints on
the model parameters. Leaf carotenoid content (Car) is linked
to the leaf chlorophyll content (Cab) with a ratio of 1:5 based
on the LOPEX’93 database [11]. The detailed values and
ranges of the input parameters of the PROSAIL model are
shown in Table 1.

The spectra of the different types of soil from the Johns
Hopkins University database are adopted as the background
reflectance in the model. A total of 1000 simulated spectra
of canopies with the LAI following the Gauss distribution
are generated for evaluation, with leaf parameters randomly
combined and other parameters fixed in their mean value of
interval. Finally, the canopy spectral reflectance is integrated
to the channel 4 (red) and 8 (near-infrared) spectral response
functions of the Sentinel-2A MSI, the image of which is used
to retrieve the LAI in Sections IV-B and IV-D.

B. In Situ LAI Measurements

The field LAI collection area is located in Hengshui, Hebei,
China, which is in the middle of the North China Plain
(centered at 115.79 °E, 37.77 °N; Fig. 1). The winter wheat
is the main crops cultivated in this area from October of the
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present year to June of the succeeding year, and our field
campaign was carried out on March 29-31 and May 4-6, 2017.
Twenty-two 100 m x 100 m sites were established and evenly
distributed across our study area in the homogeneous cropland.
Five-elementary sampling units (ESUs) were set following a
center-diagonal pattern in each site, and the distance between
them within a site exceeded 50 m. The geographical coordinate
of the ESU was recorded with a portable GPS. The LAI
data were collected five times in each ESU by using the
LAI-2000 Plant Canopy Analyzer within an approximately
5-m radius area centered at the ESU point. The median of
the five measurements was considered as the final LAI value
for the specific ESU, and the standard deviation of five mea-
surements in an ESU was regarded as the uncertainty, which
varied from 0.15 to 0.78. According to the adopted equipment
and the working scheme of our field campaign, the LAI used
in this letter should be understood as the effective PAI.

C. Sentinel-2A Multispectral Imagery

The MSI imagery of Sentinel-2A includes 13 bands, and
the red (band 4) and near-infrared (band 8) bands used for
computing the VIs have a spatial resolution of 10 m. These
data can be downloaded freely from the Sentinels Scientific
Data Hub (http://scihub.copernicus.eu/) as Level-1C orthorec-
tified reflectance at top of the atmosphere. An atmospheric
correction was conducted using the Sen2Cor atmospheric
correction toolbox (version 2.4.0) built into the Sentinel Appli-
cation Platform software (version 5.0.0) to obtain the surface
reflectance [12].

III. METHOD
A. Inverted Difference Vegetation Index

The reflectance for vegetative canopies is relatively low

in the red (660-690 nm) and high in the near-infrared
(780-1100 nm) domain. Such values characterize the canopy’s
major feature against the reflectance spectra of other objects.
Thus, 1 — preg can represent the high absorption plus the
transmittance in the red domain and 1 — pyi; represents the
low absorption plus transmittance in the near-infrared domain
of the spectrum because of the effect of leaf pigments in the
vegetation to a certain extent [13]. To enhance this difference
in the absorptive and reflective properties of the canopy in
the red and near-infrared domains, the IDVI was developed
for a large LAI estimation. The relevant formula is shown as
follows:
(1 — pred) + pnir _ 1 4 (pnir — Pred)
(I = pir) + pred 1 — (Pnir — Pred)
where preg and ppir refer to the surface reflectance of the red
and near-infrared bands, respectively.

The spectral reflectance of the background soil is rela-
tively high in the red band and low in the near-infrared
band compared with those of vegetation. Thus, the IDVI
of the background soil may possess a larger denominator
value and a smaller numerator value compared with those
of vegetation, which greatly reduces its value compared with
that of vegetation. The reflectance of surface water in the
red and near-infrared bands is very low, and the former is
slightly larger; hence, the IDVI of water is slightly lower
than 1. Similarly, some high-reflecting objects, such as snow

IDVI = (1)



1664
6 6
R*=0.98 . R*=0.99 /,’
°
4 ° 4 /0/‘
— °
< ° Tc /o/‘
— ° — /.
2 o° 2 o
® -
-~
—
N () o (b)
02 04 06 08 1 1 1.5 2 25 3
NDVI IDVI
Fig. 2. Relationship between (a) LAI and NDVI and (b) LAI and IDVIL

Yellow dots: sparse vegetation. Green dots: dense vegetation.

and clouds, characterize high reflectance in the red and near-
infrared bands, leading to the IDVI values close to 1. Thus,
such objects can be easily distinguished from that of vegetation
with the IDVI. For dense vegetation, the absorption in the red
band and the reflectance in the near-infrared band are both
higher than those of sparse vegetation. While the increment
of the reflectance of near-infrared band narrows down grad-
ually, the denominator value is small enough at this time to
boost the slight difference in the signal, which magnifies the
IDVI increment for dense vegetation.

Based on the mean value of each parameter in Table I,
the simulated canopy spectrum is generated to illustrate the
relationship between the NDVI or IDVI and the LAI (Fig. 2).
In this regard, large LAIs present a more stable and lower
sloped linear relationship with the IDVI than those with
the NDVI.

B. Statistical Model Based on the IDVI and NDVI

The NDVI has a fairly stable statistical relationship with
the LAI in low-value ranges [14]; thus, we considered the
NDVI-based relationship as the LAI estimation method in the
sparse-vegetation conditions. An IDVI-based relationship is
mainly adopted in large LAIs. To increase the accuracy and
stability of the LAI estimation results by combining the NDVI
and IDVI, we introduced the logic function as a dynamic scale
factor as follows:

1
% = 11 ¢ F(NDVI_NDVI) @)

where NDVI, is the threshold value of the NDVI upon
saturation, which could usually be assigned a default value
of 0.8 based on [15] and [16] and our experiment results (see
Fig. 2), and k is the amplitude factor in the logic function.
When NDVI; is a slightly off 0.8 due to its uncertainty
in practical applications, the scale factor does not deviate
from 0.5 markedly. However, when the NDVI deviates from
the threshold to a certain extent, the index adopted in the
sparse-vegetation (NDVI) or dense-vegetation (IDVI) condi-
tions should take the dominate place in the overall LAI
estimation. Consequently, k is ideally set at 12—20 based on the
above-mentioned criteria. Given variations in the crop type and
other influencing factors, NDVI, should be updated by a priori
knowledge before the model is applied to a new region.
Thus, the final LAI estimation equation is as follows:

LAlegtimation = (1 — a)LAINDy1 + aLAIpyy 3)
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Fig. 3. Relationship between the IDVI and LAI under different (a) chloro-
phyll content and (b) water contents.

where LAInpyr and LAlpy are the LAI estimation results
from the statistical model fit by a linear function based on the
NDVI and IDVI separately in the appropriate LAI levels.

The estimation result is based on the weighted average of
the outcome from the NDVI and IDVI, and the weighted factor
varies with the vegetation coverage density. The NDVI is more
sensitive than the IDVI in the sparse vegetation, because the
former changes significantly with the increase in LAI Thus,
the scale factor a is close to O for most sparse crop fields, and
the NDVI is much lower than the threshold. Thus, the NDVI
is highly weighted in the overall LAI estimation model in
this domain. When the NDVI increases and approaches the
saturation threshold, a increases rapidly to 0.5. Then, when
the NDVI is crossing and deviating from the threshold value,
o increases rapidly to 1 and the IDVI would become the major
contributor in the LAI estimating model.

IV. ANALYSIS AND DISCUSSION
A. Sensitivity Analysis

To ensure the accuracy and robustness of our LAI retrieval
model, the VIs adopted should be sensitive to the LAI but
not to other influencing factors. Chlorophyll and water are
the most essential absorptive materials in the leaves of crops,
and their concentrations vary widely in different phenological
stages, which may greatly affect the reflectance spectra [17].
As such, we focus on the leaf water and chlorophyll content in
our sensitivity study. Other parameters that do not vary much
in a particular cropland are also considered in our sensitivity
analysis discussions to provide more information.

Fig. 3 shows the relationship between the LAI and the
IDVI under different chlorophyll and water contents based on
the simulated data with the PROSAIL model. The IDVI was
extremely stable under different chlorophyll [see Fig. 3(a)] and
water [see Fig. 3(b)] contents in small and large LAIs, which
means that the influence of these factors on the IDVI value is
fairly weak in a specific leaf area condition. The same property
is also observed for the NDVI in [18] and [19].

Among other influencing factors, including leaf property,
canopy structure, observation geometry, and background soil
types, the average leaf angle affects the stability of the IDVI
the most, especially in the large LAI domains. The influence of
the background soil type is more significant in the small LAIs
than that in the large LAIs. However, the large LAIs are the
most often applied interval of the IDVI in the proposed model.
Thus, soil influence could be minimized to some extent. Sun
and viewing geometry also slightly affect the IDVI according
to our experimental results.
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Fig. 4. Time series plot of the IDVI, NDVI, and LAI on (a) one of the
BELMANIP sites and (b) Hengshui field campaign ESU. The orange dots in
(b) is the in situ LAI observations.
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Fig. 5. Comparison of estimated and simulated LAIs using (a) NDVI model
and (b) proposed model.

The average leaf angle represents the canopy structure of
a specific type of crop. While its sensitivity could limit the
usage of the IDVI in vast areas with complex crop types, it is
acceptable in regional scale applications, because the major
crop type is identical and constant over a specific area and
period.

B. Time-Series Analysis

The time series curves of the LAI are plotted at two typical
crop sites throughout 2017 and compared with those of the
NDVI and IDVI (see Fig. 4). The first crop site, located
in Southern France (48.81 °N, 4.71 °E), was chosen from
BELMANIP site database, and the second site is a Hengshui
field campaign ESU (37.31 °N, 115.88 °E). In situ LAI
observations for the Hengshui ESU are represented by orange
dots in Fig. 4(b). The shape of the VI curves seems similar in
the small LAIs. However, when the LAI increases, the NDVI
becomes saturated and remains constant. By comparison,
the results of the IDVI continue to increase and demonstrate
a wider variation range in accordance with the LAI changes.

C. Evaluation by Using Simulated Data

To evaluate the performance of our proposed LAI retrieval
method, we select the most widely used NDVI-based regres-
sion model for comparison [20], [21]. Using the data in Fig. 2,
the exponential function, which features the best fitting forma-
tion of the NDVI-based model, could be written as follows:

LAI = 0.0066¢’#*NPVI @)

Given the evaluation results (see Fig. 5) of the simu-
lated data, we discover that the traditional regression model
performs well in the sparse-vegetation section (LAl < 2).
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Fig. 6. Comparison of estimated and simulated LAIs using (a) NDVI model
and (b) proposed model by adding a maximum 5% random noise.

However, the LAI is overestimated in the medium vegetation
coverage condition (2 < LAI < 5) and underestimated in
the dense-vegetated condition (LAI > 5). The overall root
mean square error (RMSE) is 0.71, and 85.80% of the samples
remain within the =£1 interval of the 1:1 line. By contrast,
the proposed model performs effectively for the entire LAI
range (RMSE = 0.37, 96.90% of the samples in the interval).

Considering the influence of soil types, sensor spec-
tral responses, and atmospheric and terrain effects, simi-
lar LAI conditions may appear different in remote sensing
imageries [22]. To test the robustness of our model, we added
a maximum of 5% random disturbance to the red and near-
infrared reflectances of the Sentinal-2A MSI. Results (see
Fig. 6) show that the RMSE increases slightly for both models.
The samples retained within the &1 interval of the 1:1 line are
85.20% and 96.40% for the NDVI model and the proposed
model, respectively, which is similar to the previous overall
accuracy observed.

Given the above results, we determine that our proposed
model, which combined NDVI and IDVI, achieves a high
level of consistency with the simulated LAI. This observation
suggests the potential robust applicability of the model.

D. Validation by Using In Situ Observation Data

The proposed model is applied to the Sentinel-2 MSI
data and cross-validated with in situ LAI observations. The
imageries used for validation were acquired on March 29 and
April 28, approximately in accordance with the fieldwork time
arrangement. The LAI estimation result is compared with the
traditional statistical models based on single VIs (i.e., NDVI,
SAVI, and IDVI). Based on the outlier-removed in situ LAI
measurements and near-simultaneous Sentinel-2A imageries,
the relationship of VIs (NDVI, SAVI, and IDVI) with the LAI
is shown in Fig. 7. The NDVI (R? = 0.63) and the SAVI
(R?> = 0.75) display a nonlinear relationship with the LAI
The NDVI becomes saturated when the LAI is higher than 4,
and the SAVI performs slightly better than the NDVI. The
IDVI achieves the strongest linear correlation with the LAI in
the whole interval investigated (R? =0.82).

Table II reveals the estimation accuracy of different sta-
tistical regression methods. The regression methods on the
NDVI and SAVI are constructed by their best fit exponential
relationship with the LAI. The RMSE of the NDVI model
is the highest (1.15) among the values obtained from the
models tested, because the saturation effect is quite explicit
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TABLE 11
ESTIMATION ACCURACY OF DIFFERENT LAI RETRIEVAL MODELS

Method R RMSE
Exponential regression on NDVI 0.84 1.15
Exponential regression on SAVI 0.90 0.89
Linear regression on IDVI 0.90 0.85
Proposed model on NDVI and IDVI 0.91 0.81

(see Fig. 7). The SAVI model overcomes the saturation issue to
some extent, and the estimated RMSE decreases to 0.91. The
model based on a single IDVI shows a performance similar to
that of the SAVI model, and the proposed method on the NDVI
and IDVI offers the highest prediction ability with R = 0.91
and RMSE = 0.81.

The uncertainty of the measurements, especially in the large
LAIs, remains a major issue of validation, thus weakening the
effectiveness of the validation results. Only one crop type was
used for validation; hence, case-specific calibration is required
for future applications.

V. CONCLUSION

In this letter, a new VI called IDVI is proposed from the
red and near-infrared surface reflectances to retrieve the crop
LAI in the dense-vegetated areas. Based on our sensitivity
and time series analysis results, the IDVI is insensitive to
leaf biochemical parameters and has a wider variation range
than the NDVI. By exploiting the stability of the NDVI in
the sparse-vegetated conditions and the nonsaturation of the
IDVI in dense-vegetated conditions, we constructed a novel
statistical model based on the NDVI and IDVI with a dynamic
scale factor to estimate crop LAIs. Evaluation and validation
results based on the simulated spectra and Sentinel-2 imageries
demonstrated that our new statistical retrieval method is more
accurate and robust than the existing regression models based
on a single VI in the crop LAI estimation. However, parameter
recalibration is required for applications in a new region, and
additional work remains necessary in terms of validations
under different remote sensing imageries and crop or vege-
tation types.
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