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A B S T R A C T

As a pivotal physiological trait influencing a plant’s photosynthetic capacity, accurate and efficient character
izing of leaf chlorophyll content (LCC) is crucial for understanding terrestrial ecosystem carbon cycling. The red- 
edge reflectance spectrum, obtained through remote sensing, offers valuable insights for LCC estimation. The red- 
edge position (REP) in the vegetation spectral reflectance is a potent proxy for LCC due to its relationship with 
chlorophyll absorption. However, variations in leaf area index (LAI) can influence the REP and impact its per
formance in LCC estimation. In this study, we propose the Sentinel-2 leaf chlorophyll index (S2LCI), a novel 
vegetation index based on REP and a LAI indicator using Sentinel-2 multispectral red-edge bands. This innovative 
index significantly mitigates the influence of LAI variation and enhances the LCC. The effectiveness of S2LCI has 
been evaluated through multiple ways, including PROSAIL simulated datasets, ground-measured LCC with 
canopy spectra, and Sentinel-2 imagery. Our results demonstrate strong agreement between S2LCI and LCC in 
both simulated and ground-measured datasets (R = 0.492 for ground spectra and R = 0.526 for Sentinel-2 
imagery), outperforming classic LCC-related vegetation indices. Furthermore, S2LCI mapping reveals finer 
spatial details compared to LCC derived using the Sentinel Application Platform (SNAP) biophysical processor. 
This study highlights the suitability of S2LCI for LCC estimation and offers a promising solution, complementing 
other LCC retrieval approaches to rapidly generate decameter-scale crop LCC maps using Sentinel-2 imagery.

1. Introduction

Vegetation serves as a paramount component in the exchange of 
carbon, water and energy between the terrestrial ecosystems and the 
atmosphere, and leaf chlorophyll is the center to this vital process 
(Green et al., 2017; Xiao et al., 2021). The concentration of leaf chlo
rophyll content (LCC) is intrinsically linked to a plant’s physiological 
status and photosynthetic capacity (Chen et al., 2022; Croft et al., 2017). 
Therefore, capturing the spatial and temporal variation in LCC offers 
crucial insights into global and regional vegetation health and carbon 
cycling dynamics (Croft et al., 2020).

Traditional methods for LCC measurement typically involve 
destructive sampling of foliage or non-destructive measurements using 
contact SPAD chlorophyll meter (Markwell et al., 1995; Uddling et al., 
2007). These approaches are not only labor-intensive but also time- 

consuming (Houborg and Boegh, 2008). An increasingly promising 
alternative lies in the utilization of earth observation techniques, where 
optical remote sensing plays a pivotal role in acquiring large-scale 
vegetation-related variables. It does so by establishing relationships 
between sensor-observed signals and the physicochemical parameters of 
vegetation (Gitelson et al., 2014). Canopy spectral reflectance is influ
enced by numerous factors, including biochemical parameters (e.g., 
chlorophyll content, water content), biophysical parameters (e.g., leaf 
area index (LAI), leaf angle distribution (LAD)), and external factors 
such as atmosphere conditions, soil background, and illumination and 
imaging geometry (Berger et al., 2018a; Jacquemoud et al., 2009). 
Despite its significance, the contribution of LCC to canopy reflectance 
signals is relatively smaller in comparison to other parameters (Gu et al., 
2016; Sun et al., 2022a; Verrelst et al., 2019). Furthermore, the impacts 
of LCC and other parameters are often intertwined, necessitating a 
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means to disentangle the individual influence of LCC within sensor- 
measured canopy reflectance, which is an essential and challenging task.

The aforementioned challenges amplify the complexity and hinder 
the precision of LCC estimation using remote sensing data. Hyper
spectral images offer a nuanced portrayal of various vegetation 
biochemical and physiological traits (Sytar et al., 2017; Zhang et al., 
2021). Consequently, a multitude of methods has emerged, leveraging 
hyperspectral remote sensing data for LCC estimation. These methods 
encompass hyperspectral vegetation index (VI) (Moharana and Dutta, 
2016; Wu et al., 2008), spectral feature extraction (Noda, 2017; Zhang 
et al., 2018), physical model inversion (Berger et al., 2018a; Verrelst 
et al., 2015), and machine learning or deep learning algorithms 
(Heckmann et al., 2017; Sonobe et al., 2020; Zhang et al., 2021).

The spectral characteristics of vegetation, particularly within the 
red-edge, have demonstrated a high sensitivity to variations in LCC 
(Heckmann et al., 2017; Wu et al., 2008). The red-edge, a distinctive 
spectral feature located between the red absorption maximum and high 
reflectance in the near-infrared (NIR) (Curran et al., 1991; Horler et al., 
1983), has drawn significant attention. Among the various red-edge 
spectral features, the red-edge position (REP) has emerged as a valu
able indicator for LCC estimation. As the LCC increases, the REP un
dergoes a substantial shift towards longer wavelengths (Curran et al., 
1991; Horler et al., 1983). Quantification of the REP with hyperspectral 
data is typically achieved by determining the point of maximum slope 
along the red-edge spectral interval.

While hyperspectral imagery excels in its ability to capture extensive 
information for leaf-level biochemical parameter retrieval, it is not 
without its limitations, which constrain its capacity for large-scale LCC 
mapping. These drawbacks encompass constrained spatial coverage, 
infrequent temporal acquisition, elevated costs, and the need for a more 
intricate and time-consuming process due to the wealth of redundant 
spectral band (Gu et al., 2021; Lu et al., 2020). In contrast, multispectral 
imagery is deliberately designed to encompass specific wavelengths 
pertinent to the absorption characteristics of vegetation, enabling a 
more precise and computationally efficient approach to LCC estimation. 
In essence, multispectral data strikes a harmonious balance between 
spectral informativeness and operational practicality, rendering it a 
pragmatic choice for a multitude of applications.

One crucial asset within the Copernicus program of the European 
Space Agency (ESA) is the Sentinel-2 satellite constellation. These sat
ellites furnish imagery with three 20-m resolution multispectral narrow 
red-edge bands at a 5-day revisit interval, presenting an invaluable 
resource for vegetation monitoring (Drusch et al., 2012). By leveraging 
its capability to capture narrow-band data across the visible to short
wave infrared spectra, global coverage, and an open data policy, 
Sentinel-2 has contributed immense value to a diverse array of appli
cations, including precision agriculture (Sun et al., 2022b), forest 
monitoring (Waldeland et al., 2022), land cover mapping (Phiri et al., 
2020), and ecosystem assessment (del Río-Mena et al., 2020).

Amidst the advent of narrow-band multispectral red-edge sensors 
like Sentinel-2/MSI, a wealth of vegetation indices (VIs) have emerged, 
capitalizing on the detailed red-edge spectral information they capture, 
with representative examples including the red-edge chlorophyll index 
(CIre) (Gitelson et al., 2005) and the red-edge normalized difference 
vegetation index (NDVIre) (Gitelson and Merzlyak, 1994). Additionally, 
the Medium Resolution Imaging Spectrometer (MERIS) terrestrial 
chlorophyll index (MTCI) stands out as the pioneering red-edge chlo
rophyll index meticulously tailored for a specific multispectral red-edge 
sensor, and it has been operationally implemented as a standard level 2 
global product derived from the ENVISAT MERIS dataset (Dash and 
Curran, 2004).

In contrast to previous multispectral satellite data, which often 
featured just a single red-edge band, as exemplified by RapidEye or 
WorldView, the Sentinel-2 has ushered in the potential to discern shifts 
in REP with its three narrow red-edge bands. Nonetheless, those 
methods for REP determination specifically designed for hyperspectral 

data may not be directly applicable to Sentinel-2 data (Ollinger, 2011). 
To tackle this challenge, the Sentinel-2 red-edge position (S2REP), as 
proposed by Frampton et al. (2013), employs a linear interpolation 
technique with the advantage of a limited number of spectral bands. It 
estimates the REP using the first two Sentinel-2 red-edge bands, centered 
at 705 nm and 740 nm, positioned on the red-edge slope. The S2REP 
serves as an excellent surrogate for REP in the context of Sentinel-2 data, 
characterized by its insensitivity to variations in background soil. 
Nevertheless, the impact of LAI remains substantial. Consequently, it 
becomes imperative to mitigate the LAI effect and enhance the LCC 
signal to bolster the accuracy and stability of LCC retrieval, especially in 
complex scenes.

The primary objective of this study is to formulate a vegetation index 
that exhibits sensitivity to LCC while remaining resilient to the influence 
of LAI using the REP in conjunction with Sentinel-2’s multispectral red- 
edge information. Our approach commences with an exploration of 
vegetation red-edge spectra and their defining characteristics. Subse
quently, we introduce the Sentinel-2 leaf chlorophyll index (S2LCI), 
which hinges on the S2REP and a LAI indicator. The proposed S2LCI is 
then subjected to comprehensive evaluation and benchmarking against 
other prominent multispectral chlorophyll vegetation indices, utilizing 
both simulated and ground-measured datasets. Finally, we engage in a 
discourse regarding the suitability, advantages, sources of uncertainty, 
and potential applications of the S2LCI.

2. Material

2.1. PROSAIL simulations

To explore the spectral characteristics of vegetation and assess the 
performance of the S2LCI, we employed the PROSAIL model, a well- 
established tool for simulating canopy reflectance under various con
ditions. This model integrates the PROSPECT-D leaf optical properties 
model (Féret et al., 2017) and the Scattering by Arbitrarily Inclined 
Leaves (SAIL) canopy bidirectional reflectance model (Verhoef et al., 
2007). The PROSAIL model is widely recognized for its capability to 
simulate canopy spectra and conduct sensitivity analyses (Jacquemoud 
et al., 2009). To comprehensively understand the characteristics of 
vegetation spectra and Sentinel-2 band reflectance, we conducted a 
systematic exploration. We selectively varied specific parameter, such as 
LCC, while keeping other variables constant. The parameter settings 
used for these simulations are provided in the captions of Fig. 2 and 
Fig. 3, both of which are presented in Section 4.1. In order to ensure the 
size and representativeness of the synthetic dataset used for evaluating 
the S2LCI, we generated a total of 20,000 spectra by randomly gener
ating and combining input parameters within a wide range. This 
rigorous approach allowed us to capture diverse variations and in
teractions among the parameters, contributing to a robust and reliable 
assessment of the S2LCI. Truncated Gaussian or uniform distribution 
were employed to generate the input variables of the PROSAIL model, 
and Table 1 provides a comprehensive list of values and distributions for 
input parameters used in generating the simulated spectral dataset. 
These parameters are based on those relevant to wheat, the primary 
vegetation type for our field LCC measurements (Berger et al., 2018b; 
Zhang et al., 2021). The PROSAIL simulated canopy spectral reflectance 
was subsequently convolved with the Sentinel-2/MSI spectral filters to 
align it with the band reflectance.

2.2. Ground canopy spectra dataset and LCC field observations

To validate the performance of the S2LCI, we employed in-situ 
datasets collected from two distinct geographical regions: Yangling 
Agricultural Hi-tech Industries Demonstration Zone and Luohe Experi
mental Site (as depicted in Fig. 1). Yangling Agricultural Hi-tech In
dustries Demonstration Zone is geographically situated at 34.3◦N, 
108.1◦E and is located within the Guanzhong Plain of China. This region 
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exhibits typical continental monsoon climate characteristic, with an 
annual average temperature of approximately 12.9℃ and an average 
precipitation of around 635 mm. In contrast, the Luohe Experimental 
Site is positioned at 33.5◦N, 114.1◦E and experiences a warm temperate 
monsoon characterized by wet summer and dry winter. The yearly 
average temperature in this area is approximately 14.6℃, and the 
average annual precipitation amounts to 805 mm. Both of these regions 
primarily cultivate winter wheat (Triticum aestivum L.) and summer 
maize (Zea mays L.), managed under rotation irrigated practices. Winter 

wheat is sown in early October and harvested in early June (Yangling) or 
late May (Luohe) the following year.

For our study, data collection focused on the jointing stage of wheat 
in Yangling, with field measurements conducted on March 30, 2013, and 
March 28, 2014. In Luohe, our field campaign spanned from the tilling 
stage to the jointing stage of wheat and took place on March 8, 2018, and 
April 6, 2018. In Yangling, canopy spectra measurements were recorded, 
while LCC data were collected in both Yangling and Luohe. The canopy 
spectra and LCC data from Yangling were utilized for ground-scale 

Fig. 1. Geographical locations of experimental sites and sampling for ground canopy spectra and LCC measurements. The upper-right panel shows a true-color 
composite derived from Sentinel-2 imagery captured on the dates coinciding with the fieldwork in Luohe Experimental Site. The lower-right panel displays a 
photograph of LCC measurement using a SPAD-502 chlorophyll meter on March 8, 2018.

Fig. 2. Conceptional diagram of Sentinel-2 leaf chlorophyll index (S2LCI). The S2REPnorm and S2NDRE scatters roughly delineate a trapezoid (gray region) in the 2-D 
feature space, with the color of the scatters indicating LCC values. The LCC isoline is nearly parallel to the bottom edges of the trapezoid, and the distance between 
the baseline and a specific point is defined as the S2LCI, representing the relative leaf chlorophyll content of vegetation canopy.
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validation, whereas the data from Luohe were employed to validate LCC 
results derived from Sentinel-2 imagery. Sample points in Luohe were 
carefully situated within homogeneous croplands, each having a mini
mum spatial extent of 40 × 40 m and a sample size of 20 × 20 m. The 
geographic coordinates of each sample point were meticulously recor
ded using a portable GPS device, with coordinates formatted in WGS- 
1984 longitude and latitude. In total, 118 valid samples were collected 
in Yangling, and an additional 51 samples were gathered in Luohe for 
the validation process.

Hyperspectral reflectance data from the canopy was acquired using 
an ASD FieldSpec Pro spectroradiometer (Analytical Spectral Devices, 
Inc., Boulder, CO, USA). This state-of-the-art instrument boasts an 
extensive spectral range from 350 to 2,500 nm, with a resampled in
terval of 1 nm. The spectroradiometer features a fiber optic detector 
with a field of view of 25◦, and it was meticulously positioned at a height 
of approximately 1 m directly above the wheat canopy. In order to 
mitigate the potential influence of varying environmental conditions, 
five distinct positions within each sample point were randomly selected 
for hyperspectral measurement. The resultant canopy reflectance 
spectra were calculated by dividing the canopy’s spectrum by that of a 
corresponding standard white panel. To obtain a representative spectral 
reflectance for each sample point, the average value of the five reflec
tance measurements was employed. Subsequently, the measured canopy 
spectral reflectance was harmoniously integrated into Sentinel-2 band 
reflectance, utilizing the spectral response functions specific to the 
Sentinel-2 sensor.

To ascertain LCC, the SPAD-502 chlorophyll meter (Konica Minolta, 
Inc.) was utilized. In a given sample point, five positions were randomly 
selected for LCC measurements. To enhance accuracy, four replicate 
measurements were conducted at varying levels within the wheat can
opy—upper, middle, and lower. This approach generated a total of 
twelve readings, which were then averaged to yield the representative 
SPAD value for that particular position. The average of the five SPAD 
readings within each sample point was taken as the LCC proxy for that 
point. It is important to note that the SPAD values were employed 
directly as the ground proxy for LCC, as no local calibration for the 
SPAD-to-LCC conversion relationship was conducted following the 
initial measurements.

2.3. Sentinel-2 images

The Sentinel-2 images utilized in this study coincide with the timing 
of the Luohe field campaign, captured on March 9 and April 8, 2018. 
These images provided spatial coverage over the Luohe Experimental 

Fig. 3. Leaf reflectance spectra in the 650–825 nm interval (a) and Sentinel-2 band reflectance (b) simulated by the PROSPECT-D model (Féret et al., 2017). 
Simulations were performed over a range of leaf chlorophyll content (Cab) from 20 μg cm− 2 to 90 μg cm− 2 at a step of 10 μg cm− 2. The carotenoid content was set to 
10 μg cm− 2, the anthocyanin content was 1 μg cm− 2, the leaf structure parameter was 1.2, the dry matter content was 0.002 g cm− 2 and the equivalent water 
thickness was 0.005 cm.

Table 1 
Parameter settings for PROSAIL model used for canopy reflectance modeling.

Type Parameters Values or 
distributions

Minimum 
value

Maximum 
value

Leaf Leaf chlorophyll 
content (Cab, 
μg cm− 2)

Gauss(50, 15) 20 80

Dry matter 
content (Cm, 
g cm− 2)

Gauss(0.007, 
0.002)

0.003 0.011

Leaf structure 
parameter (N)

Gauss(1.5, 
0.5)

1 2

Leaf carotenoid 
content (Ccar, 
μg cm− 2)

10 − −

Brown pigment 
content (Cbrown, 
μg cm− 2)

0 − −

Leaf anthocyanin 
content (Cant, 
μg cm− 2)

1 − −

Equivalent water 
thickness (Cw, 
cm)

0.005 − −

Canopy Leaf area index 
(LAI, m2m− 2)

Uniform(1, 6) 1 6

Average leaf 
angle (ALA, 
degree)

Gauss(50, 10) 30 70

Background Soil moisture 
factor (ρsoil)

Uniform(0, 1) 0 1

Sun-target- 
sensor 
geometry

Solar zenith 
angle (SZA, 
degree)

Gauss(30, 10) 0 60

View zenith 
angle (VZA, 
degree)

Gauss(10, 5) 0 20

Relative azimuth 
angle (RAA, 
degree)

0 − −

Note: The numbers in parenthesis for Gauss distribution represent mean value 
and standard deviation, and they represent lower bound and upper bound for 
Uniform distribution.
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Sites. Our data source for these images was the ESA Sentinels Scientific 
Data Hub. We obtained these images in the form of Level-1C orthor
ectified top of atmosphere (TOA) reflectance data. Subsequently, an 
atmospheric correction process was applied to convert them into top of 
canopy (TOC) reflectance data, using the Sen2Cor atmosphere correc
tion toolbox (version 2.5.5) which is embedded in the Sentinel Appli
cation Platform (SNAP) software (version 6.0.0). To ensure the 
preservation of the red-edge bands in the atmospherically corrected 
images, the spatial resolutions of all bands were uniformly set to 20 m, 
enabling the simultaneous use of the green, red and NIR bands (Drusch 
et al., 2012).

3. Methods

3.1. A leaf chlorophyll index based on Sentinel-2 red-edge position and 
LAI indicators

Since the REP is influenced by both leaf chlorophyll content and leaf 
area in most scenario, the necessity arises to disentangle and eliminate 
the influence of LAI on REP, as our primary focus is the accurate rep
resentation and retrieval of leaf chlorophyll content using REP. In this 
study, we introduce a novel vegetation index for the estimation of leaf 
chlorophyll content by leveraging the multispectral red-edge reflectance 
data from Sentinel-2. Table 2 provides an overview of the spectral band 
configuration of Sentinel-2/MSI. Among these bands, Band 5 and Band 6 
of Sentinel-2/MSI play a crucial role in characterizing the distinctive 
increase in reflectance at the red-edge, offering finer spectral details 
compared to earlier multispectral satellite data, which typically feature 
only a single red-edge band. However, it is important to note that Band 7 
of Sentinel-2 falls outside the spectral range associated with the sharp 
red-edge increase, functioning more like a NIR band, despite being 
labeled as a red-edge band by ESA (Sun et al., 2020).

In this study, we adopt the Sentinel-2 red-edge position (S2REP) as 
proposed by Frampton et al. (2013) to serve as our proxy of the REP. 
S2REP is determined using a linear interpolation technique, where the 
reflectance at the inflexion point is estimated, thus retrieving the REP 
through interpolation of the Sentinel-2’s first two red-edge bands (Band 
5 and Band 6), as outlined in Eq. (1). It has been widely recognized as an 
effective alternative to REP and an excellent indicator for quantifying 
LCC in numerous studies (Qian et al., 2022; Xie et al., 2019). 

S2REP = 705+35 ×
(B7 + B4)/2 − B5

B6 − B5
(1) 

The proposed Sentinel-2 leaf chlorophyll index (S2LCI) is con
structed using the S2REP and a LAI indicator, aiming to minimize the 
impact of LAI on REP data. We employ a simplified version of S2REP 
(Eq. (2)), with values typically confined between 0 and 1 for most 
vegetation conditions, which is subsequently combined with the LAI 
indicator for a unified scale. In this case, we utilize the Sentinel-2 
normalized difference red-edge vegetation index (S2NDRE) as the LAI 

indicator (Eq. (3)), a metric that exhibits a strong positive correlation 
with LAI while being minimally affected by LCC (Sun et al., 2023). 

S2REPnorm =
(B7 + B4)/2 − B5

B6 − B5
(2) 

S2NDRE =
B6 − B4
B6 + B4

× B7 (3) 

The S2REPnorm and S2NDRE, when combined in the S2REPnorm/ 
S2NDRE 2-dimentional feature space, offer valuable information about 
vegetation LCC and LAI. While various factors influence the precise 
location of a vegetation pixel within this feature space, LCC and LAI are 
the primary determinants. A trapezoid shape (gray area in Fig. 2) rep
resenting different combinations of input parameters from the PROSAIL 
simulated dataset is evident in the S2REPnorm/S2NDRE space. Ideally, if 
S2REPnorm is entirely and exclusively influenced by LCC, vegetated 
pixels with the same LCC should have an equal distance between them 
and the Y-axis. However, the LCC isoline does not run perfectly vertical 
to the X-axis, indicating that factors other than LCC systematically 
impact S2REPnorm, with LAI being the most influential among these 
factors. Conversely, the S2NDRE is nearly exclusively influenced by LAI 
and exhibits a near-vertical LAI isoline to the Y-axis (Fig. S1).

To explain the process of calculating S2LCI, we first establish a 
baseline, which runs parallel to the LCC isoline and crosses the origin, in 
the S2REPnorm/S2NDRE space (Fig. 2). The slope of this baseline, 
denoted as ‘k’, is primarily determined by the type of vegetation. By 
default, we set ‘k’ to 2.0 based on extensive PROSAIL simulations of 
wheat corresponding to ground LCC measurement (Section 2.2). The 
distance between the baseline and the pixel, herein defined as the S2LCI 
(Eq. (4)), serves as a measure of the relative leaf chlorophyll content of 
the vegetation canopy (Fig. 2). 

S2LCI =
k × S2REPnorm − S2NDRE

̅̅̅̅̅̅̅̅̅̅̅̅̅̅
k2 + 1

√ (4) 

3.2. Compared vegetation indices and evaluation indicators

We selected a range of representative and state-of-the-art multi
spectral vegetation indices, many of which were initially developed for 
the purpose of retrieving leaf chlorophyll content, for comparison with 
the S2LCI. Detailed formulations of these indices, utilizing Sentinel-2 
bands, are provided in Table 3.

To assess the performance of the proposed S2LCI and the afore
mentioned vegetation indices for LCC retrieval, we employed several 
key indicators. The coefficient of determination (R2) and root-mean- 
square error (RMSE) were utilized to assess the effectiveness of regres
sion models for estimating LCC using various vegetation indices, 
drawing from the simulated dataset. In addition, the coefficient of cor
relation (R) was employed to gauge the goodness-of-fit between these 
vegetation indices and the ground-measured SPAD values. Our approach 
involved a five-fold cross-calibration methodology, in which the dataset 
was randomly divided into five equally sized, mutually exclusive groups. 
Four groups were designated as the calibration dataset, while the 
remaining group served as the validation dataset. This five-fold cross- 
calibration process was repeated to ensure each group had an oppor
tunity to serve as both the calibration and validation datasets. This 
approach, which avoids relying on a single random partition for cali
bration and validation, bolsters the robustness and reliability of our 
calibration and validation procedures. Additionally, to investigate the 
accuracy of VI-based LCC retrievals across various LAI levels, we 
employed a bias calculation, representing the difference between the 
estimated LCC based on a VI and the model-input LCC.

Table 2 
Spectral band setting of Sentinel-2/MSI.

Band Central wavelength (nm) Band width (nm) Spatial resolution (m)

B1 443 20 60
B2 490 65 10
B3 560 35 10
B4 665 30 10
B5 705 15 20
B6 740 15 20
B7 783 20 20
B8 842 115 10
B8A 865 20 20
B9 945 20 60
B10 1375 30 60
B11 1610 90 20
B12 2190 180 20
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4. Results

4.1. The REP characteristics of vegetation

The shape and magnitude of vegetation red-edge spectra are influ
enced by multiple factors, making it essential to distinguish the contri
bution of each factor to these red-edge spectral characteristics, 
especially the red-edge position, which plays a significant role in 
delineating LCC, as previous studies have indicated (Curran et al., 1991; 
Gitelson et al., 2005; Wu et al., 2008).

A prominent absorption feature in the red band reflectance of 
Sentinel-2 is observed in the leaf spectrum, originating from the strong 
absorption by chlorophyll at around 675–681 nm. In the NIR spectral 
domain (778–800 nm), a relatively flat plateau is evident in the leaf 
spectrum (Fig. 3 and Fig. 4), and leaf chlorophyll does not exert a sig
nificant impact in the NIR band reflectance (Fig. 3). Positioned between 
the red valley and the NIR plateau is the red-edge spectral interval, and 
the variation in chlorophyll content influences its starting and ending 
points (Fig. 3). As leaf chlorophyll content increases, both the starting 
and ending points of the red-edge shift towards longer wavelengths, 
resulting in a red shift of the REP (Fig. 3). This shift occurs because there 

is minimal absorption of most other leaf biochemical constituents within 
this spectral interval, and the absorption coefficient of chlorophyll 
gradually decreases with increasing wavelength (Fig. S2).

Leaf area index characterizes the leaf density within the vegetation 
canopy (Chen and Black, 1992), and it significantly influences the shape 
of the red-edge spectrum at the canopy scale. Simulations using the 
PROSAIL model indicate that as LAI increases from 1 to 7, the value of 
the NIR band reflectance of Sentinel-2 sharply rises (Fig. 4). Addition
ally, the ending point of the red-edge tends to shift towards longer 
wavelength as LAI increases, resulting in a mild red shift of the REP 
(Fig. 4).

The magnitude of the NIR plateau is affected by the degree of ab
sorption from dry matter and the multi-scattering from leaf structure 
(Fig. S3a and Fig. S3c). Variations in the leaf structure parameter change 
the starting point of the red-edge (Fig. S3c), contributing to the overall 
REP variation alongside chlorophyll content. The variation in leaf 
inclination angle impacts the value of NIR plateau and the slope of the 
red-edge but has nearly no effect on the REP (Fig. S3d). As the propor
tion of dry soil, i.e., soil moisture content, in the background soil in
creases, the magnitude of canopy reflectance spectra enhances in the 
NIR plateau domain, resulting in a slight steepening of the red-edge 

Table 3 
Leaf chlorophyll-related vegetation indices used for comparison in this research, along with the corresponding Sentinel-2/MSI band configuration.

Vegetation index Formulation reference

NDVI B8A − B4
B8A + B4

(Rouse et al., 1974)

Red-edge NDVI 1 (NDRE1) B6 − B5
B6 + B5

(Gitelson and Merzlyak, 
1994)

Red-edge NDVI 2 (NDRE2) B8A − B5
B8A + B5

(Gitelson and Merzlyak, 
1997)

Modified chlorophyll absorption ratio index (MCARI)
[(B5 − B4) − 0.2 × (B5 − B3) ] ×

B5
B4

(Daughtry et al., 2000)

Transformed chlorophyll absorption ratio index/optimized soil-adjusted vegetation index 
(TCARI/OSAVI)

3 × [(B5 − B4) − 0.2 × (B5 − B3) × B5/B4 ]

(1 + 0.16) × (B8A − B4)/(B8A + B4 + 0.16)
(Haboudane et al., 2002)

MERIS terrestrial chlorophyll index (MTCI) B6 − B5
B5 − B4

(Dash and Curran, 2004)

Red-edge chlorophyll index (CIre) B8A
B5

− 1 (Gitelson et al., 2005)

Modified chlorophyll absorption ratio index /optimized soil-adjusted vegetation index 
(MCARI/OSAVI [705, 750])

[(B6 − B5) − 0.2 × (B6 − B3) ] × B6/B5
(1 + 0.16) × (B6 − B5)/(B6 + B5 + 0.16)

(Wu et al., 2008)

Transformed chlorophyll absorption ratio index/optimized soil-adjusted vegetation index 
(TCARI/OSAVI [705, 750])

3 × [(B6 − B5) − 0.2 × (B6 − B3) × B6/B5 ]

(1 + 0.16) × (B6 − B5)/(B6 + B5 + 0.16)
(Wu et al., 2008)

Sentinel-2 red-edge position (S2REP)
705 + 35×

(B7 + B4)/2 − B5
B6 − B5

(Frampton et al., 2013)

Sentinel-2 triangular vegetation index (STVInorm) SRT − SAT

SRT + SAT

SAT = 0.5 × [105 × (B5 − B2) − 145 × (B4 − B2) ]

SRT = 0.5 × [125 × (B7 − B6) − 145 × (B8A − B6) ]

(Qian et al., 2022)

Fig. 4. Canopy-scale reflectance spectra in the 650–825 nm interval (a) and Sentinel-2 band reflectance (b) simulated by the PROSAIL model (Jacquemoud et al., 
2009). Simulations were performed over a range or increasing LAI from 1 to 7 at a step of 1. The average leaf inclination angle was set to 30◦.
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curve (Fig. S2b). However, the REP remains unaffected by changes in 
soil moisture, underscoring its suitability as an index to eliminate the 
influence of soil characteristics.

In summary, changes in leaf chlorophyll content significantly impact 
the REP, resulting in a red shift with higher LCC. LAI has a minor 

influence on the ending point position of the red-edge and, conse
quently, a slight variation in the REP. While a higher leaf structure 
parameter may cause a red shift in the starting point position of the red- 
edge, its impact is limited compared to LCC and LAI, especially in ho
mogeneous regions or specific vegetation types. Other parameters, such 

Fig. 5. Relationship between chlorophyll-related vegetation indices and leaf chlorophyll content with the PROSAIL simulated dataset (n = 20,000). The dashed red 
line represents the best-fitting curve (linear or quadratic polynomial, power, or exponential) for estimating LCC with each vegetation index, and the shaded red area 
represents the 95 % confidence bounds of the regression equation. (For interpretation of the references to color in this figure legend, the reader is referred to the web 
version of this article.)
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as leaf dry matter content, leaf inclination angle of canopy, and back
ground soil properties, have minimal effect on the REP.

4.2. S2LCI evaluation with PROSAIL simulation

The performance of the S2LCI in LCC estimation was first evaluated, 
and a comparison was made with other chlorophyll vegetation indices 
using the PROSAIL simulated dataset. Multiple regression models, 
encompassing linear, quadratic polynomial, power, and exponential 
regressions, were employed to formulate predictive models for LCC 
based on each vegetation index. The model that yielded the lowest 
RMSE was designated as the optimal fit for the respective vegetation 
index. Generally, all the chlorophyll vegetation indices, except for the 
NDVI, provided reliable LCC estimates, with R2 for the regression 
models ranging from 0.3839 to 0.6798 and RMSE from 7.529 to 10.44 
μg cm− 2 (Fig. 5).

Excluding the NDVI, the MCARI/OSAVI [705, 750], TCARI/OSAVI 
[705, 750], NDRE1 and NDRE2 exhibited the worst performance in LCC 
estimation among all the indices, with RMSE values exceeding 10 μg 
cm− 2 (Fig. 5b, c, h, i). These indices displayed significant scatter in the 
low LCC range, indicating sensitivity to underlying soil properties, 
especially for low LAIs. The MCARI/OSAVI [705, 750] was originally 
designed for hyperspectral sensor like Hyperion (Wu et al., 2008), which 
likely limits its adaptation to the characteristics of the Sentinel-2 mul
tispectral sensor. The MCARI, TCARI/OSAVI, and CIre showed moderate 
goodness-of-fit with LCC, achieving R2 values for the regression model 
between 0.4519 and 0.5856, and RMSE values ranging from 8.566 to 
9.851 μg cm− 2 (Fig. 5d, f, g). However, these VIs still exhibited sub
stantial dispersion in some LCC intervals, and their relationship with 

LCC were somewhat nonlinear. For instance, CIre showed higher un
certainty in the estimation of large LCC values compared to small ones, 
while MCARI and TCARI/OSAVI demonstrated the opposite trend.

The MTCI, S2REP and STVI achieved the highest retrieval accuracy 
and goodness-of-fit with LCC among all the VIs considered for com
parison, with R2 values for the regression model ranging from 0.6274 to 
0.6798, and RMSE values between 7.529 and 8.122 μg cm− 2 (Fig. 5e, j, 
k). These VIs displayed better linearity with LCC and were less suscep
tible to background effects. Notably, the MTCI was particularly effective 
in LCC estimation in smaller value intervals.

The S2LCI proposed in this study outperformed all other VIs in LCC 
estimation, with an R2 value for the regression model of 0.7901 and an 
RMSE of 6.096 μg cm− 2 (Fig. 5l). This represented a significant 
improvement compared to the other VIs. Moreover, the linear rela
tionship between S2LCI and LCC remained stable across the entire range 
of LCC values, and the uncertainty did not increase for extremely high or 
low LCC values. This indicated that there were no systematic over- or 
underestimation in LCC retrieval application, highlighting the robust
ness and reliability of S2LCI for diverse LCC ranges.

It’s important to note that some VIs, including NDVI and MCARI, 
showed saturation effects when LCC exceeds 40 μg cm− 2. This saturation 
phenomenon can limit their performance in accurately estimating LCC. 
The S2LCI effectively mitigated this issue, leading to enhanced stability 
and reliability in LCC estimation, even within larger LCC intervals. This 
characteristic underscores the superiority of S2LCI over traditional VIs 
in handling high LCC values, emphasizing its potential for robust LCC 
assessment.

The effect of LAI on the retrieval accuracy and sensitivity of different 
vegetation indices, including the S2LCI, MTCI, S2REP, and STVI, was 

Fig. 6. Whisker boxplots of LCC estimation bias for different LAI intervals using (a) MTCI, (b) S2REP, (c) STVI, and (d) S2LCI. The shaded area represents ±5 μg/cm2 

of the LCC retrieval error.
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further explored. The PROSAIL simulation dataset was grouped based on 
LAI values, and the bias in LCC estimation were calculated for each LAI 
group. Fig. 6 presents boxplots of the LCC estimation bias for different 
LAI intervals, with the shaded area representing a range of ± 5 μ g cm− 2 

of LCC retrieval error.
Overall, the S2LCI exhibited the highest independence from varia

tions in LAI, with minimal estimation bias across different LAI levels. In 
contrast, the MTCI, S2REP, and STVI showed noticeable positive or 
negative estimation biases in response to large or small LAI values. For 
moderate LAI conditions, particularly with LAI values between 3 and 4, 
the bias was small and close to 0 for all the VIs. However, as LAI 
increased or decreased, the S2REP exhibited a corresponding red or blue 
shift, resulting in an overestimation or underestimation of LCC. A similar 
pattern was observed for the MTCI and STVI, both of which were 
significantly influenced by LAI. It’s worth noting that the estimating 
uncertainty, represented by the length of the box whisker, was relatively 
higher for the MTCI across all LAI intervals compared to other VIs.

These results emphasize the advantage of the S2LCI in terms of its 
reduced sensitivity to variations in LAI, making it more robust for LCC 
estimation across different canopy structures. In contrast, traditional VIs 
like MTCI, S2REP, and STVI demonstrated greater sensitivity to LAI, 
which could lead to biased LCC estimates, especially under extreme LAI 
conditions. This underscores the capability of S2LCI to provide reliable 
and consistent LCC estimations under diverse vegetation canopy 
densities.

4.3. S2LCI evaluation with ground canopy spectra

The study tested the applicability of the S2LCI at both the ground 
scale using hyperspectral canopy spectra datasets and satellite scale 
using Sentinel-2 images. In the ground-scale testing with winter wheat 
canopy spectra collected at the Yangling experimental sites, the hyper
spectral data were converted to multispectral information using the 
Sentinel-2/MSI spectral response function. The S2LCI, as well as three 
well- performing comparative VIs (MTCI, S2REP and STVI), were 
calculated and compared with ground SPAD measurements. Unlike the 
results from simulated datasets, relationship between VIs and LCC at the 
ground scale demonstrated increased instability and retrieval uncer
tainty. Nevertheless, the S2LCI exhibited the highest goodness-of-fit 
with the SPAD value (R = 0.492), and its R value was 16.7 % to 23.6 
% higher than that of the three comparative VIs (Fig. 7), indicating 
acceptable model accuracy.

4.4. S2LCI evaluation with Sentinel-2 images

4.4.1. Ground measured LCC validation
The S2LCI and the three comparative VIs were then calculated using 

Sentinel-2 images and validated with ground SPAD measurements of 
winter wheat in the Luohe experimental area. These measurements were 
conducted during the tilling and jointing stages of winter wheat. The 
validation of the VIs demonstrated a performance similar to that of the 
ground canopy spectra dataset, with generally lower goodness-of-fits 
compared to the PROSAIL simulations. This difference might be 

Fig. 7. Relationship between VIs derived from ground canopy spectra dataset and measured leaf SPAD value of winter wheat in the Yangling experimental sites.
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attributed to various factors such as the geometry of the Sentinel-2/MSI, 
atmospheric effect, geo-registration error, and mixed pixels.

The S2LCI consistently showed the highest goodness-of-fit with the 
SPAD values in both the ground-scale and satellite image-scale valida
tions (R = 0.526), while the S2REP and STVI had slightly lower but very 
similar accuracy to the S2LCI (Fig. 8). In contrast, the MTCI showed the 
poorest performance, which could be related to spectral band differ
ences between Sentinel-2/MSI and MERIS. In summary, the S2LCI 
demonstrated a high goodness-of-fit with the SPAD value in both 
ground-scale and satellite image-scale applications. This characteristic is 
valuable for regional-level estimation of LCC, highlighting the potential 
of the S2LCI in practical applications.

4.4.2. Comparison with SNAP biophysical processor derived LCC
The study compared the LCC retrieval results obtained from the 

S2LCI and the SNAP biophysical processor in a small region near Luohe 
City, which was where the field LCC measurement were conducted. 
Despite the performance of SNAP LCC may varied from crop type to 
region, it could achieve comparable accuracy especially for homoge
neous winter wheat (Xie et al., 2019). Thus, we adopted it as a bench
mark to explore its consistency with proposed S2LCI. The comparison 
was conducted for two specific dates, March 9 and April 8, 2018, cor
responding to the tilling and jointing stages of winter wheat.

Fig. 9 and Fig. 10 depict the spatial distribution of S2LCI and SNAP- 
derived LCC over the study region. A notable difference in LCC between 
the tilling and jointing stage was observed in the SNAP-derived result 
(Fig. 11). In contrast, more spatial details were observed in the S2LCI 
maps for both stages. The coefficient of variation, derived as the 

standard variation normalized by the mean value, was higher for S2LCI 
(0.079 and 0.102) compared to SNAP LCC (0.072 and 0.091) within the 
region (Fig. 11).

The correlation coefficient between S2LCI and SNAP-derived LCC 
was larger during the tilling stage compared to the jointing stage 
(Fig. 12). In other words, the consistency between S2LCI and SNAP- 
derived LCC was higher for smaller LCC values than for larger LCC 
values. However, it’s worth noting that the LCC values between these 
two growing stages did not significantly differ based on the field LCC 
measurements. This resulted in noticeable under- or overestimation in 
the tilling or jointing stages of SNAP results (Fig. S4). As a result, the 
relatively small change in S2LCI histograms was closer to the actual 
situation compared to the significant shift in SNAP LCC histograms be
tween two winter wheat growing stages (Fig. 11). These findings indi
cate that the S2LCI demonstrated more spatial detail and greater 
consistency between the two growing stages, which makes it a prom
ising tool for tracking changes in LCC during different crop growth 
stages.

5. Discussions

Quantitatively assessing leaf chlorophyll content is of paramount 
importance in ecological, environmental modeling, and agricultural 
applications (Chen et al., 2022; Croft et al., 2017; Huang et al., 2019). 
Nonetheless, accurately retrieving LCC from optical remotely sensed 
data has posed a formidable challenge due to its relatively subtle signal 
within canopy spectra compared to other vegetation parameters. Re
searchers have been diligently working to disentangle the LCC signal 

Fig. 8. Relationship between VIs derived from Sentinel-2 images and ground measured leaf SPAD value of winter wheat in the Luohe experimental area.

Y. Sun et al.                                                                                                                                                                                                                                      Computers and Electronics in Agriculture 236 (2025) 110500 

10 



Fig. 9. S2LCI maps of a small region near Luohe City derived from Sentinel-2/MSI on (a) March 9th, 2018 and (b) April 8th, 2018. The background images are the 
true color composites from Sentinel-2/MSI.

Fig. 10. LCC maps of a small region near Luohe City derived from Sentinel-2/MSI with SNAP on (a) March 9th, 2018 and (b) April 8th, 2018. The background images 
are the true color composites from Sentinel-2/MSI.
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from the overall vegetation response, thereby enhancing retrieval ac
curacy. These efforts span both hyperspectral and multispectral data 
(Gitelson et al., 2014; Wu et al., 2008; Zhang et al., 2021). While the red 
band is acutely affected by chlorophyll, coinciding with its peak ab
sorption, it becomes saturated at higher chlorophyll concentrations, 
causing a shift in the red-edge domain (Curran et al., 1991; Horler et al., 
1983). Leveraging the potential of the Sentinel-2 sensor’s additional 
three red-edge multispectral bands has become a promising avenue for 
cost-effective and precise LCC estimation.

To harness red-edge information in LCC retrieval, the ESA’s official 
algorithm, integrated into the SNAP software, relies on a combination of 
physical radiative transfer modeling and neural network retrieval 
strategy (Weiss et al., 2020). Nevertheless, this method is often time- 
intensive and not conducive to swift, large-scale LCC mapping. 
Furthermore, the accuracy of LCC estimates derived from SNAP’s algo
rithm may not consistently meet the demands of various scenarios (Xie 
et al., 2019). Alternatively, employing vegetation indices offers a prac
tical and efficient means of characterizing relative LCC values. This 
research endeavors to introduce a novel chlorophyll index, leveraging 
the multispectral red-edge information from the Sentinel-2 platform, 
aimed at mitigating interference from factors like LAI and other con
founding variables.

5.1. Suitability and advantages of the S2LCI

In the context of previous research (Curran et al., 1991; Frampton 
et al., 2013; Gitelson et al., 2005; Wu et al., 2008) and our own analyses 
based on PROSPECT-D and SAIL simulations, it’s well-established that 
the REP of the vegetation spectrum is predominantly influenced by leaf 
chlorophyll content, with relatively minor contributions from canopy 
leaf area in most scenarios. The foundation of the proposed Sentinel-2 
leaf chlorophyll index (S2LCI) lies in the innovative S2REP, which 
effectively estimates the red-edge position by harnessing information 
from the Sentinel-2 red and red-edge multispectral bands, along with the 
S2NDRE. Consequently, the S2LCI shares with the S2REP the valuable 
attribute of robustness against variations in background soil spectra, as 
affirmed by our sensitivity analysis, which even indicates that the S2LCI 
exhibits superior and more consistent performance under different soil 
moisture conditions (Fig. S5). This makes it particularly well-suited for 
LCC assessments where background soil characteristics may vary.

Notably, the S2LCI distinguishes itself from other prominent chlo
rophyll related vegetation indices like the MTCI and STVI. While these 
indices are more influenced by LAI (Dash and Curran, 2004; Qian et al., 
2022), S2LCI significantly reduces the impact of it (Fig. 6). This pivotal 
advantage renders it a valuable tool for comparing LCC across various 
phenological stages of vegetation when LAIs may exhibit different.

While hyperspectral vegetation indices are generally acknowledged 

Fig. 11. Histograms of (a) SNAP-derived leaf chlorophyll content and (b) S2LCI probability over the small region near Luohe City (Fig. 9 and Fig. 10) for March 9th, 
2018 and April 8th, 2018. The coefficient of variations for S2LCI are 0.079 (March) and 0.102 (April), while they are 0.071(March) and 0.091 (April) for SNAP LCC.

Fig. 12. Comparison of S2LCI and SNAP-derived leaf chlorophyll content over the small region near Luohe City (Fig. 9 and Fig. 10) for (a) March 9th, 2018 and (b) 
April 8th, 2018.
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for their superior correlation with LCC, the limit spatial coverage and 
restricted access to airborne or satellite hyperspectral data can hinder 
large-scale regional LCC mapping. Achieving a balance between accu
racy and cost-effectiveness is paramount. In this context, the Sentinel-2 
multispectral-based S2LCI, which has demonstrated its accuracy 
through evaluations with simulated and in-situ datasets, can serve as a 
valuable addition to the suite of Sentinel-2 vegetation indices (Frampton 
et al., 2013; Qian et al., 2022) or approaches (Li et al., 2021) for LCC 
estimation. Its ability to provide accurate and cost-effective LCC esti
mates makes it particularly suitable for applications at regional and 
larger scales.

5.2. Sources of uncertainty and limitations

Despite the impressive performance of the S2LCI in LCC estimation, 
it is crucial to acknowledge certain sources of uncertainty and limita
tions that should be considered when applying this index. One key 
limitation arises from the assumption that the slope of the LCC isoline in 
the S2REPnorm/S2NDRE space is constant across all LCC levels. In re
ality, this slope experiences slight changes with varying LCC values, 
particularly becoming smaller under extremely low or high LCC condi
tions. This inherent variability implies that the relationship between the 
S2LCI and LCC may exhibit increased uncertainty in scenarios of 
extreme LCC values. One way to mitigate this limitation could involve 
implementing a variable slope for the LCC isoline, tailored to different 
LCC ranges.

The S2LCI relies on two fundamental VIs, S2REP and S2NDRE, and 
any errors introduced into these constituent VIs can propagate into the 
S2LCI. For instance, while S2NDRE is highly sensitive to LAI and 
insensitive to the LCC, it can be influenced by factors such as leaf angle 
inclination (Sun et al., 2023). The impact of leaf angle inclination on 
S2LCI is evident in the increasing bias of S2LCI in LCC estimation as the 
average leaf angle enlarges (Fig. S6). Therefore, research efforts should 
continue to identify more suitable vegetation indices serve as the proxies 
of LAI and LCC, minimizing their susceptibility to the influence of other 
factors. The concept of an error ellipse, inspired by the standard devi
ation within a small elliptical region in the 2-dimentional space, as 
utilized in the MODIS LAI/FPAR product (Knyazikhin et al., 1998) and 
certain matrix-based vegetation indices (Xu et al., 2019), could be in
tegrated into the S2LCI calculation. This would provide a quality flag, 
indicating the degree of uncertainty associated with the S2LCI value.

Addressing mixed pixel, especially those covering sparse vegetation, 
remains a challenge due to the dilution of the canopies signal by back
ground soil. While the S2LCI is unbiased in LCC estimation with respect 
to soil (Fig. S5b), the uncertainty increases as the proportion of vege
tation in the mixed pixel decreases. Disentangling the contributions of 
vegetation and soil in mixed pixel and calculating the S2LCI with the 
vegetation component alone is essential but challenging with multi
spectral data (Bioucas-Dias et al., 2012). Further research should 
explore methods to better account for mixed pixels in S2LCI 
applications.

The relationship between the S2LCI and LCC, as established in this 
work, is based on the SAIL canopy radiative transfer model, and only 
validated on wheat. It’s important to recognize that this relationship 
may vary depending on the vegetation species and the specific charac
teristics of heterogeneous canopies. Consequently, future work should 
delve into biome-specific relationships between the S2LCI and LCC to 
account for this variability. Expanding the dataset with additional field 
measurements is paramount to provide a more comprehensive evalua
tion of the S2LCI. This should encompass a broader range of crop types, 
temporal periods, and geographical regions to enhance the validity and 
generalizability of the proposed index. In doing so, the S2LCI can be 
further validated and refined for broader agricultural contexts.

5.3. Potential applications

Despite the inherent limitations of the vegetation index approach in 
remote sensing for vegetation variables, such as regional dependency, 
the rapid expansion of satellite sensor capabilities, encompassing both 
broad and narrow spectral bands, continues to drive the development of 
VIs (Zeng et al., 2022). One of the notable challenges with existing leaf 
chlorophyll products is their spatial resolution, typically ranging from 
kilometer to hectometer (Croft et al., 2020; Dash et al., 2010; Xu et al., 
2022). The introduction of the S2LCI presents a compelling solution to 
rapidly attain decameter-scale LCC estimates using the Sentinel-2 im
agery, particularly when coupled with cloud-computing platforms such 
as the Google Earth Engine (GEE) (Gorelick et al., 2017). This 
improvement in spatial resolution is particularly advantageous for pre
cision agriculture and other applications that require fine-grained LCC 
spatial information.

The concept underpinning the S2LCI holds promise for extension to 
other multispectral or hyperspectral sensors equipped with two or more 
red-edge configurations, such as China’s GaoFen-6/WFV (Yang et al., 
2020), ESA’s Sentinel-5P/TROPOMI (Borsdorff et al., 2018; Guanter 
et al., 2021), and the upcoming FLEX mission, which covers a broader 
spectral range from 500 to 780 nm (Drusch et al., 2017). However, it’s 
important to recognize that adapting the specific formulation and co
efficients of the new leaf chlorophyll index to these sensors will be 
necessary to ensure optimal performance.

Moreover, the S2LCI operates within a 2-dimensional space that 
primarily accounts for leaf area in its calculation. Expanding this 
framework to a higher-dimensional space could facilitate the inclusion 
of additional factors in LCC estimation, potentially enhancing the 
index’s versatility and precision. This expansion aligns with the 
increasing availability of spectral data from advanced sensors and pre
sents opportunities for more comprehensive approaches to vegetation 
variable retrieval.

6. Conclusions

In this study, we introduce a novel leaf chlorophyll sensitive vege
tation index, the Sentinel-2 leaf chlorophyll index (S2LCI), utilizing the 
Sentinel-2 multispectral red-edge information. This index offers a 
valuable tool for rapid and high-resolution monitoring of leaf chloro
phyll content over large geographic regions. The S2LCI is designed based 
on a 2-dimentional space defined by the red-edge position (REP) and a 
LAI indicator, effectively mitigating the influence of variations in leaf 
area. Thorough validation and comparison with existing leaf 
chlorophyll-related vegetation indices demonstrate that the S2LCI out
performs alternative indices, showcasing the strongest correlation with 
LCC and the lowest RMSE in LCC estimation across both simulated and 
ground-based datasets. Furthermore, a comparative assessment with 
LCC estimates obtained through the SNAP biophysical processor reveals 
that the S2LCI consistently delivers more reliable results, particularly 
across diverse crop growth stages and with enhanced spatial details. The 
S2LCI excels in its resilience to fluctuations in LAI and background soil 
properties, underpinning its suitability for monitoring leaf chlorophyll 
content across different phenological and vegetation states. Neverthe
less, the S2LCI is not immune to certain sources of uncertainty, such as 
error accumulation associated with the underlying REP and S2NDRE, 
and the mixed-pixel effect. Future research should focus on addressing 
these challenges and enhancing the robustness of the S2LCI in LCC 
estimation. Moreover, the concept of the S2LCI has the potential to be 
extended to other multispectral sensors equipped with two or more red- 
edge bands. This study serves as a foundation for future investigations 
that may consider the integration of additional factors using higher- 
dimensional spaces, thereby further refining the accuracy and scope of 
leaf chlorophyll content estimation in the realm of remote sensing.
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